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Abstract

Recently, discrete Morse vector fields have been shown to be useful in various ap-
plications. Analogous to the simplification of large meshes using edge contractions,
one may want to simplify the cell complex K on which a discrete Morse vector field
V (K) is defined. To this end, we define a gradient aware edge contraction operator
for triangulated 2-manifolds with the following guarantee. If V (K) was generated by a
specific persistence-based method, then the vector field that results from our contrac-
tion operator is exactly the same as the vector field produced by applying the same
persistence-based method to the contracted complex. An implication of this result is
that local operations on V (K) are sufficient to produce the persistence-based vector
field on the contracted complex. Furthermore, our experiments show that the struc-
ture of the vector field is largely preserved by our operator. For example, 1-unstable
manifolds remain largely unaffected by the contraction. This suggests that for some
applications of discrete Morse theory, it is sufficient to use a contracted complex.

1 Introduction

Morse theory has become a subject of interest due to its ability to completely describe the
flow of a class of vector fields defined over a manifold [22]. Such a description is useful for
scientific purposes, as it improves understanding of the behavior of the underlying Morse
function - a smooth function without any degenerate critical points. This description is called
the Morse-Smale complex, and it is uniquely defined for a manifold-Morse function pair. A
Morse-Smale complex is a decomposition of the manifold into regions of similar flow, called
cells. Each point on the given manifold is either critical or lies on an integral line between a
unique pair of critical points. An integral line is a path between (but not including) a pair
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Figure 1: An example of a smooth Morse-Smale complex with four Morse cells bounded by
black curves connecting a maximum (peaks) to two saddles and each saddle to a minimum
(pit).

of critical points with tangent vectors that agree with the gradient of the Morse function at
all points. Hence, a cell in the Morse-Smale decomposition is precisely the set of all points
in a manifold which lie on an integral line between two given critical points. We include an
example of a Morse-Smale complex in Figure 1. Such a topological characterization of vector
fields is important in areas including fluid dynamics and aerodynamics, when it is necessary
to work with continuous functions [21].

However, experimental data is not usually collected in the form of Morse functions. This
makes applying smooth techniques problematic. The first attempt at constructing a discrete
version of the Morse-Smale complex was done by Edelsbrunner et. al. for piecewise linear 2-
manifolds, but their techniques are fairly involved [10]. Forman’s discrete Morse theory, the
focus of this paper, establishes an analog of the Morse-Smale complex for functions defined
over cell complexes [14, 13]. For simplicity, this paper only considers simplicial complexes.
Key to discrete Morse theory is a class of functions called discrete Morse functions. Anal-
ogous to the smooth case, these functions induce a gradient vector field on their domain.
Forman’s theory is strictly combinatorial, and most of its results pertain to manipulating dis-
crete vectors. No derivatives are required. Despite this, discrete Morse theory still contains
a number of concepts analogous to structures in classical Morse theory. Among these are
notions of critical simplices and gradient paths, which can be thought of as corresponding to
critical points and integral lines, respectively. In the discrete case, the highest dimensional
cells may serve as local maxima when they are critical, and critical vertices serve as local
minima. When critical, all other simplices are the equivalent of saddles. Hence, gradient
paths connect higher dimensional simplices to lower dimensional simplices. These gradient
paths allow the computation of a Morse-Smale complex for triangulated manifolds, with
structure resembling that of the smooth Morse-Smale complex. Forman’s theory has found
applications in a variety of areas, including cosmology, terrain analysis, and road network
reconstruction [3, 24, 25, 7, 8].

Discrete Morse functions are defined over all simplices in a simplicial complex, whereas
scientific data can usually be thought of as a height function on a set of points. The canonical
example of this is terrain modeling: on some collection of points, one has elevation data,
but no information on the behavior of the terrain between the sampled points. A simplicial
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complex can be generated over the terrain by taking some triangulation of the sampled points.
These points are the vertices of the simplicial complex, and they are the only simplices in
the complex that are associated with a function value. While interpolation methods could
be used to assign function values to higher dimensional simplices, this will only be a discrete
Morse function on the rarest of occasions. Various techniques have been proposed to compute
a discrete Morse vector field from an input height function defined over a complex’s vertex set
[24, 15, 23, 5, 18]. We choose to use an algorithm presented by Bauer et. al. which, given any
triangulated 2-manifold, outputs a discrete Morse gradient vector field on the triangulation
[2]. This algorithm is advantageous in that it is simple (see [8] for further simplification)
to implement and very intuitive. It takes as input two parameters: a filtration, or a total
ordering on the simplices of K often referred to as ≺, and a tuning parameter, δ, which
influences the number of remaining critical simplices. When δ =∞, their algorithm is proven
to output a discrete Morse vector field which minimizes the number of critical simplices.

This δ value tunes the output according to the persistence associated with each edge.
The idea behind persistence is that if K0 is chosen to be an empty complex, and Ki is the
complex that results after adding the ith simplex under ≺ to Ki−1, then each added simplex
either creates or destroys a homological class. Such a creation or destruction corresponds to
a change in the topology of the complex. Persistent homology provides a description of this
changing topology by capturing the lifetime – or the “persistence” – of the various classes.
For a more thorough treatment of persistent homology, we encourage the reader to consult
[11] or [9]. Each edge is then either associated with the persistence of the class which it
creates or destroys. The algorithm by Bauer et. al. leaves those edges with persistence ≥ δ
as critical.

Triangulated 2-manifolds, together with the discrete Morse gradient vector fields defined
on them, can become quite large. An obvious approach to controlling size is to arbitrarily
contract edges in the original manifold prior to computing the discrete Morse vector field.
Such a procedure is problematic, because a contraction operator that is oblivious to vector
field dynamics may lead to a drastically different vector field on the contracted manifold.
An alternative is to contract edges in the triangulation and modify the original vector field
slightly to fit the new complex. To make contraction as efficient as possible, it is important
that the vector field only needs to be modified local to the contraction. Work in this area
was initiated by Iuricich and De Floriani, who established such a contraction operator in
the context of storing a discrete Morse vector field at several resolutions [16]. However, their
criteria for a permissible contraction are fairly strong, in that they disallow circumstances
where contraction could be permitted. In particular, they do not permit contractions that
destroy critical simplices. This paper establishes a contraction operator which subsumes
their criteria and, more importantly, comes with additional mathematical guarantees. If one
were to run the algorithm by Bauer et. al. on the contracted manifold with the same δ that
generated the original discrete Morse vector field, then the output vector field is guaranteed
to be the same as the one which results from the contraction operator. The new operator is
established in Section 4, while a formalization of the guarantee is in Section 5.

An unstable 1-manifold is the set of all simplices that can be reached by gradient paths
originating at a critical edge. An example can be seen in Figure 2. Various authors have
found uses for these manifolds [24, 25, 7, 8, 5]. These unstable manifolds largely preserve
their structure under contraction. Hence, it is often sufficient to use a much coarser complex
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Figure 2: An example of unstable 1-manifolds on a terrain near Los Alamos, New Mex-
ico before (left) and after (right) 400,000 edge contractions. Note that there is very little
difference in the paths of the unstable manifolds.

for the previous applications. In Section 6, we demonstrate this approach on a road network
reconstruction application as a proof of concept. In addition, the new contraction operator
is more general than the state of the art, and experiments are presented comparing coarsest
possible representations. The paper concludes in Section 7 with a discussion on future
directions for research.

2 Discrete Morse theory

We now provide background in Forman’s discrete Morse theory. For a more thorough treat-
ment, we refer the reader to [14] or [13]. In this section, we define K to be a simplicial
complex. Fundamental to discrete Morse theory are discrete Morse functions. A function
f : K → R is a discrete Morse function if it satisfies the following two conditions for all
simplices σ ∈ K:

|{τ <1 σ | f(τ) ≥ f(σ)}| ≤ 1 (1)

|{τ >1 σ | f(τ) ≤ f(σ)}| ≤ 1 (2)

where we write τ <1 σ or σ >1 τ if τ is a facet (a face of codimension 1) of σ. Forman
proved that both of these quantities cannot be positive for the same simplex.

Lemma 1. For every simplex σ ∈ K, |{τ <1 σ | f(τ) ≥ f(σ)}| = 0 or |{τ >1 σ | f(τ) ≤
f(σ)}| = 0.

These conditions also give a concept of a critical simplex.

Definition 2. A simplex σ is critical if |{τ <1 σ | f(τ) ≥ f(σ)}| = 0 and |{τ >1 σ | f(τ) ≤
f(σ)}| = 0

Critical simplices will play a similar role in computing the Morse-Smale complex as they
do in the smooth case.

Discrete Morse theory defines the Morse-Smale complex in terms of gradient vector fields.
Such a gradient vector field is constructed as one might expect: if τ <1 σ and f(τ) ≥ f(σ),
where f is a discrete Morse function, then the discrete Morse gradient field contains a vector
with tail at τ and head at σ. In such a case, we say that τ “targets” σ. Note that Lemma 1
implies the following.
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Figure 3: An example of a discrete Morse function (left) with its induced gradient vector
field (right). Those simplices which are neither the head nor tail of a gradient vector are
precisely those simplices which are critical.

Corollary 3. Every simplex σ ∈ K satisfies exactly one of the following:

1. σ is the head of exactly one vector and the tail of no vector

2. σ is the tail of exactly one vector and the head of no vector

3. σ is neither the head nor tail of any vectors.

Equivalently, a simplex can participate in at most a single discrete Morse vector. In
Figure 3, we provide an example of a vector field induced by a discrete Morse function.
Note that it is not immediate that an arbitrary assignment of vectors satisfying Corollary 3
necessarily corresponds to a vector field induced by a discrete Morse function. An arbitrary
assignment of these vectors is called a discrete vector field. A vector field induced by a
discrete Morse function is a discrete Morse vector field. To establish which discrete vector
fields are discrete Morse vector fields, it is necessary to define a notion of “flow” induced by
these vector fields. Forman formalizes this notion by defining the analog of the integral line.

Definition 4 (V-Path). A sequence of simplices a0, b0, a1, b1, . . . , an, bn, an+1 is a V-Path if for
each i = 0, 1, . . . , n, there is a discrete Morse vector from ai to bi, and ai+1 <1 bi, ai+1 6= ai.

Frequently, V-paths are referred to as gradient paths. A gradient path is closed if a0 =
an+1. Closed gradient paths can also be called cycles. It is standard to abuse notation such
that the last simplex of the path is not required to be of the same dimension as the first.
That is, V-Paths are permitted to end on bn instead of an+1. An example of such a gradient
path can be seen on the left in Figure 4, where there are gradient paths from the only
critical triangle to two critical edges. The following Theorem, due to Forman, establishes
which discrete vector fields are induced by a discrete Morse function.

Theorem 5 (Cyclicity). A discrete vector field is a discrete Morse vector field if and only if
it contains no nontrivial closed V-Paths.

Hence, preventing any closed V-Paths is paramount when developing a contraction op-
erator. In developing his theory, Forman also developed a notion of “canceling” critical
simplices. For a critical simplex σ to cancel critical simplex τ , it is required that they differ
in dimension by 1. Hence, assume dim(σ) = dim(τ) + 1. Simplices τ and σ can cancel each
other if there exists a gradient path from σ to τ . An example can be seen in Figure 4. The
cancellation operator amounts to reversing the direction of the arrows in the gradient path.
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Figure 4: An example of a discrete Morse gradient field before (left) and after (right) the
cancellation of a critical triangle with a critical edge along the path indicated with shades
of gray. Note that on the left, the dark gray triangle is critical, whereas on the right, it is
targeted by an edge.

Hence, after canceling, there is a V-path from τ to σ instead of the reverse. However, this is
potentially problematic. In the image on the left of Figure 4, there are gradient paths from
the dark grey critical triangle to two different critical edges. Should the other critical edge
have been chosen to be canceled, then there would have been a closed gradient path in the
resulting vector field. Hence, prior to cancellation, it is necessary to ensure that cancella-
tion will not create a cycle. As we have previously discussed, for a complex of dimension
n, critical n-simplices correspond to local maxima and critical vertices correspond to local
minima. Canceling a critical n-simplex then has the effect of removing a local maximum. In
this sense, the cancellation operation is effectively a morphology simplification operator.

3 Persistence based discrete Morse vector fields

3.1 2-manifolds

We describe an algorithm by Bauer et. al. [2] which uses persistence to construct a discrete
Morse vector field on a triangulated 2-manifold K. The algorithm is based on the work of
Attali et. al. [1] who describe a method to compute persistence in linear time on filtered
graphs. Inputs to the algorithm are a parameter δ and a filtration K0 ⊆ K1 ⊆ . . . ⊆ Km = K
where each Ki is itself a subcomplex of K. Note that this filtration can be thought of as a
sequence of sublevel sets of K. Hence, the filtration induces a height function

h : K → R

where, if σ ∈ Ki and σ 6∈ Ki−1, h(σ) corresponds to the height value assigned to Ki. The
simplices are assigned a persistence value, which is equal to the lifetime of the homological
class they create or destroy. If a simplex σ creates a homological class that is destroyed by a
simplex τ coming later in the filtration, we say (σ, τ) is a persistence pair and the persistence
of σ and τ is h(τ)−h(σ). Notice that a homology class created by σ may never be destroyed,
in which case, its persistence is assigned to be ∞.

The algorithm has the advantage of being incredibly simple, and tunable to generate
a varying number of critical simplices by parameter δ. Those edges with persistence ≥ δ
remain critical. Pseudocode is available in Algorithm 1. The reader may wish to consult [2]
(and [8] for further simplification) for more details.
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It is important to note that the algorithm requires a total order on the simplices of K.
This is given by the filtration. In the event that |Ki \Ki−1| > 1, we break ties by placing the
lowest dimensional simplices first, and then arbitrarily breaking ties within each dimension.
This induces a new filtration where each sublevel set adds exactly one simplex. Hence, we
assume that for the initial filtration, |Ki \Ki−1| ≤ 1. We refer to the total order induced by
such a filtration as ≺.

The algorithm proceeds in four steps, the first two of which are a modified version of
Kruskal’s algorithm. The first step is to build a minimum spanning forest on the graph
induced by the triangulated manifold under the aforementioned total order. When an edge
e is introduced to the minimum spanning forest, e joins two trees rooted at vertices v0
and v1. Whichever of v0 or v1 has lower height value is then chosen to be the root of the
new combined tree. The edge e pairs with the vertex that has the larger height value and
thus the persistence associated with edge e is exactly h(e) − max{h(v0), h(v1)}. This is
because introducing edge e kills one of the two 0-cycles, and the class of the younger cycle
(occurring later in the filtration) is chosen to die. Should the persistence of the edge be
greater than or equal to δ, the two trees remain distinct but are symbolically connected to
enable computing persistence for the remaining edges. Effectively, we maintain two forests.
One which constructs a minimum spanning tree, and one which maintains a forest that
is equivalent to the minimum spanning tree except missing those edges with associated
persistence ≥ δ.

The second step is a similar procedure on the graph that is induced by thinking of the
triangles as vertices connected by edges. However, it is important to remove any boundary
that may exist in the complex. This procedure is depicted in Figure 6. Each boundary
edge is assigned a new triangle with a very high height value. The same modified version
of Kruskal’s algorithm is then used to build a maximum spanning forest on this graph with
edges disjoint from the previous minimum spanning tree. Similar to the previous case, when
an edge e is introduced in the maximum spanning tree, e joins two trees rooted at triangles
t0 and t1. Unlike the previous case, the root of the new combined tree is whichever of t0 or t1
has a greater height value. The persistence associated with e is then min{h(t0), h(t1)}−h(e).
Again, if the persistence associated with e is greater than or equal to δ, then the trees remain
disjoint.

Following the completion of this stage, there are a series of disjoint vertex/edge and
edge/triangle trees, which are disconnected from each other via edges e which have associated
persistence greater than δ. Each tree is either rooted at a minimum vertex or a maximum
triangle. These minima and maxima will be the only simplices in each tree which remain
critical. The third and fourth steps are to assign discrete Morse vectors. This is done by
leaving the root critical, and propagating up the tree, in the case of a vertex/edge tree, or
down the tree, in the case of triangle/edge trees. An example can be seen in Figure 5.

3.2 Guarantees

The following theorems pertaining to the algorithm follow from work in [2] and [1].

Theorem 6. For a triangulated 2-manifold K, Algorithm 1 outputs a valid discrete Morse
vector field on K.
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Algorithm 1 Computing a gradient vector field on a 2-manifold with boundary from a
filtration

1: procedure Construct-Vector-Field(K, δ, f) . K a simplicial complex, δ
persistence limit, f : K → R

2: V,E, T ← Separate(K) . Separate K into vertices, edges, triangles
3: Modified-Kruskal’s-MinST(E)
4: Remove-Boundary(V ,E,T )
5: Modified-Kruskal’s-MaxST(V ,E,T )
6: Assign-Vectors-Vertices(V )
7: Assign-Vectors-Triangles(T )

Figure 5: An example of how vectors are assigned to edges in
Assign-Vectors-Triangles(left) and Assign-Vectors-Vertices(right). Those edges
which remain critical are the ones with associated persistence greater than or equal to δ.

Figure 6: An example of a triangulated 2-manifold before (left) and after (right) the
Remove-Boundary procedure.
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A less immediate result concerns the optimality of the algorithm.

Theorem 7. If K is a triangulated 2-manifold and δ = ∞ then Algorithm 1 outputs an
optimal discrete Morse vector field on K. That is, no additional simplices may be cancelled.

3.3 Related Algorithms

Several authors have developed algorithms for computing a discrete Morse vector field on
2-manifolds. Lewiner et. al. invented an algorithm which can construct an optimal discrete
Morse function over a 2-manifold in [19] and extended it to achieve near-optimal results
on arbitrary complexes in [20]. Their algorithm is quite similar to the one provided in the
previous subsection when δ = ∞, but it does not take a filtration or a height function as
input, and thus it is not suitable for scalar field analysis. Robins et. al. have proposed a
homotopy extension-based algorithm for computing discrete Morse vector fields on cubical
complexes in 2 and 3 dimensions [23]. Their algorithm is proven to be optimal for specific
classes of cubical complexes. It has been adapted for simplicial complexes in [12, 26]. King
et. al. and Čomić et. al. have both also presented algorithms for computing a discrete
Morse gradient field from a height function [18, 4]. None of these algorithms are tunable
with some δ, which enables testing our contraction scheme on vector fields with a varying
amount of critical simplices.

4 Edge contraction

4.1 Preliminaries and definitions

We now establish criteria for a contraction operator which, upon contraction, outputs the
same discrete Morse vector field as the vector field that would be obtained by running Algo-
rithm 1 on the contracted complex. Throughout this section, we label an initial triangulated
2-manifold, possibly with boundary, as K. Similarly, we will often refer to the resulting
manifold after contraction as K ′. As each simplex in K is equipped with a height value, we
define the function

h : K → R

to refer to this quantity. The edge to be contracted is denoted as e = {u, v} ∈ K. We label
u and v such that u ≺ v (that is, u occurs before v in the input filtration).

In addition, we label various simplices “near” the contracting edge, e. See Figure 7 for
reference. Those simplices containing {u, v} as a face are called vanishing simplices. In
Figure 7 these are simplices {a, u, v}, {b, u, v}, and {u, v}. We say a simplex is a mirrored
simplex if it is not vanishing, but is the facet of vanishing simplex. In Figure 7, these are
edges {a, u}, {a, v}, {b, u}, {b, v} and vertices {u} and {v}. Each mirrored simplex is paired
with its mirror. If σ is a mirrored simplex, then the mirror of σ is the simplex obtained
by considering the convex hull of σ but swapping out u for v (or vice versa). Therefore, in
Figure 7, {a, u} and {a, v} are each others’ mirrors with respect to the edge e. Similarly,
{b, v} and {b, u} are a pair of mirrors, as are {u} and {v}. Adjacent simplices are those
simplices which are neither vanishing simplices nor mirrored simplices, but contain at least
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Figure 7: A reference figure when considering to contract edge {u, v}. Local triangles are
highlighted in light grey while local edges and vertices are highlighted in red.

one mirrored simplex as a face. In Figure 7, these are triangles {a, c, u}, {b, d, u}, {a, f, v},
{b, g, v}, and edges {c, u}, {d, u}, {f, v}, and {g, v}. Finally, bystander simplices are those
simplices which are a face of a mirrored simplex, but not a mirror themselves. In Figure
7, these are the vertices {a} and {b}. We refer to a simplex that is vanishing, mirrored, or
a bystander as being local to the edge being contracted. Equivalently, local simplices are
those σ which are either vanishing or the face of a vanishing simplex. We aim to establish
a contraction operator which preserves the validity of the discrete Morse vector field while
only considering simplices local to the edge that is being contracted. In addition, we will
define our contraction operator such that our contractions are faithful to the underlying total
order.

4.2 Contraction operator

We now define the contraction operator, viewed as simplicial map

ξ{u,v} : K → K ′

where {u, v} is the edge to be contracted. For notational ease, we assume that u ≺ v.
Naturally, only local simplices are affected by a contraction, so ξ{u,v} can be viewed as
the identity on all nonlocal simplices. For local simplices, more care is needed. Mirrored
simplices are going to be “merged” into a single simplex, so it is necessary to choose which
one will survive. Rigorously, if σ1, σ2 are mirrors, where u is a constituent vertex of σ1,
then ξ{u,v}(σ1) = ξ{u,v}(σ2) = σ1. In effect, we choose the mirror which occurs earlier in the
total order as the “survivor,” while ensuring that it contains the surviving vertex. Hence,
ξ{u,v}(σ1) = ξ{u,v}(σ2) assumes the first position in the total order occupied by σ1 or σ2. If
σ is an adjacent simplex, then ξ{u,v}(σ) is the simplex formed by replacing v with u. For
bystander simplex σ, we define ξ{u,v}(σ) to be σ. For vanishing simplices σ with nonvanishing
facet τ , we define ξ{u,v}(σ) = ξ{u,v}(τ). This is somewhat intuitive: consider the vanishing
triangles in Figure 7. Each triangle has two facets which are mirrors. The triangle is mapped
to the same simplex as the mirrors are. Similarly, {u, v} is mapped to the same simplex as
u and v.
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4.3 Induced vector field

Now that a contraction operator is defined on K, it is necessary to define how a vector field
is induced on K ′. We define V (K) to be the discrete Morse vector field on K. Hence, V (K)
is a set of pairs of simplices {σ, τ} where σ is a facet of τ . We use the elements of V (K)
together with ξ{u,v} to define the elements of V (K ′), a discrete Morse vector field on K ′. We
often refer to V (K ′) as the induced vector field. In particular, if {σ, τ} ∈ V (K), and both σ
and τ are nonlocal to {u, v}, then {ξ{u,v}(σ), ξ{u,v}(τ)} = {σ, τ} ∈ V (K ′). However, if either
σ or τ is local to {u, v}, more care is needed.

When vectors on mirrored edges are of different types, it is necessary to choose which
vector induces a member of V (K ′). For example, if a pair of mirrored edges τ1, τ2 target
distinct adjacent simplices, then it is necessary to decide which adjacent simplex in K ′ is
targeted by ξ{u,v}(τ1) = ξ{u,v}(τ2). Note that there are four distinct types of discrete Morse
vectors involving mirrored edges.

• Bystander tail, Mirrored head

• Mirrored tail, Adjacent head

• Mirrored tail, Vanishing head

• Mirrored tail, Mirrored head

In addition, there is the possibility that one or both of the mirrors is critical. When con-
fronted with such choices, we choose to assign vectors to the image of the mirrored edges
with the following priority.

1. Bystander tail, Mirrored head

2. Mirrored tail, Mirrored head

3. Mirrored tail, Adjacent head

4. Critical edge

Note that because it is not possible for two mirrored simplices to target the same vanishing
simplex, there is always some alternative to take. We choose this alternative. In addition,
there is the possibility that both mirrors target adjacent simplices and it is necessary to
choose which adjacent simplex to target. We choose not to contract in such circumstances.
For mirrored vertices u, v, it may be that highest priority vector is not compatible with
the vectors already assigned to the mirrored edges. Hence, we choose the highest priority
compatible vector. It is easy to see that this method of assigning discrete Morse vectors
defines a unique gradient vector field V (K ′). An example of how vectors are assigned in K ′

can be seen in Figure 8.
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Figure 8: An example of how discrete Morse vectors are assigned on mirrored edges when
contracting edge {u, v}. For the left vanishing triangle in the top left image, note that one
mirror targets an adjacent triangle (priority 3) and its partner targets a vanishing triangle
(last priority). Hence, the image of the mirrored edges targets the image of the adjacent
simplex.

4.4 Link condition

Note that in certain cases, it is possible that contracting an edge can change the topology
of K. That is, there are possible edges for which K is a 2-manifold, but K ′ is not. The
algorithm outlined in Section 3 is only guaranteed to work on 2-manifolds, so it is critical
that K ′ is also a 2-manifold. To ensure this, we require that {u, v} meets the link condition
[6]. Let Star(σ) denote the set of all simplices with σ as a face. Recall that the closure Cl(A)
of a set of simplices A is A together with every simplex that is a face of an element of A.
Define the link Lk(σ) of a simplex σ to be Cl(Star(σ)) \ Star(Cl(σ)).

Definition 8 (Link Condition). An edge e = {u, v} satisfies the link condition if Lk(e) =
Lk(u) ∩ Lk(v). We say e is contractible if it satisfies the link condition.

For further discussion on the link condition, we refer the reader to [6].

4.5 Contraction criteria

We now have established a sufficient foundation such that we can establish criteria for con-
traction. In doing so, we aim for our contraction to accomplish three main objectives:

1. The induced vector field V (K ′) is a valid discrete Morse vector field. Equivalently,
V (K ′) contains no cycles.

2. The contraction operator does not introduce any new critical simplices.

3. If V (K) is the gradient vector field induced by filtration K0 ⊆ K1 ⊆ . . . ⊆ Km = K
for some δ, then V (K ′) is induced by the filtration ξ{u,v}(K0) ⊆ ξ{u,v}(K1) ⊆ . . . ⊆
ξ{u,v}(Km) with the same δ.
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Figure 9: Vertices u, v are admissible by way of a local gradient path from v to u (first left,
second left), a local gradient path from v and u to a bystander (second right), and by {u, v}
being part of the edge-vertex spanning tree and {u, v}, u, v all being critical (far right).

In principle, we aim to establish an easily checkable set of criteria on simplices local to
some edge e = {u, v} to determine if contracting e will satisfy the given objectives. To do
so, we define the following terms.

Definition 9 (Admissible Triangle). A vanishing triangle t relative to e = {u, v} is said to be
an admissible triangle if one of the following conditions is met:

• Neither mirror facet of t relative to e is the tail of a vector with a head that is an
adjacent simplex.

• One mirror facet of t targets an adjacent triangle, and the other mirror facet targets t.

The vanishing triangles in Figure 8 are admissible. Requiring vanishing triangles to be
admissible means we will not have to choose between competing mirrored/adjacent vectors.

Definition 10 (Admissible Vertices). For edge {u, v}, the pair of vertices u, v are said to be
admissible vertices if at least one of the following conditions is met.

1. There exists a local V-path from u to v

2. There exists a local V-path from v to u

3. There exist local V-paths from u and v to some bystander vertex r

4. u and v are both critical and {u, v} is critical and paired with a vertex in the persistence
sense

By “local” V-path, we mean a gradient path where all simplices are local. Notice that for
u, v to be be admissible vertices requires the existence of a path in the vertex/edge spanning
tree from u to v. Examples can be seen in Figure 9

These definitions, together with the link condition, constitute our criteria.

Definition 11 (Admissible Edge). An edge e = {u, v} is an admissible edge if both incident
triangles are admissible triangles, u, v are admissible vertices, and {u, v} is contractible.

Only admissible edges are candidates for contraction.
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5 Theoretical guarantee

We now show that the induced vector field satisfies the stated objectives. We take K to be
a triangulated 2-manifold, and define K ′, V (K), and V (K ′) as in Section 4.

Theorem 12. If e = {u, v} is an admissible edge, and V (K) is a discrete Morse vector field
over K, then the vector field V (K ′) induced by ξ{u,v} is a valid discrete Morse vector field
over K ′.

Proof. Aiming for a contradiction, we assume that V (K ′) is not a valid discrete Morse vector
field. Therefore, there are two cases: V (K ′) admits either a nontrivial closed vertex/edge
gradient path or a nontrivial closed triangle/edge gradient path.

First, assume that V (K ′) admits a nontrivial closed triangle/edge gradient path. Note
that all those vectors in V (K) for which both the head and the tail are nonlocal to {u, v}
are also in V (K ′). Therefore, the closed edge/triangle gradient path must contain an edge
σ, where σ = ξ{u,v}(τ1) = ξ{u,v}(τ2) and τ1 and τ2 are mirrors relative to e.

Hence, consider the closed edge/triangle gradient path σ, t1, e1, t2, e2, . . . , tn, σ. Because
σ targets t1, it follows that there exists a vector with tail τ1 or τ2 and head ξ-1{u,v}(t1) in

V (K). Without loss of generality, we assume that the vector {τ1, ξ-1{u,v}(t1)} ∈ V (K). But
because both triangles incident to e are admissible, this implies that there is a vector in
V (K) with tail at τ2 and head at the vanishing triangle between τ1 and τ2, which we
call t. Therefore, since those triangles incident to e are admissible, V (K) admits a gra-
dient path τ1, t, τ2. But this implies that V (K) admits a nontrivial closed gradient path
τ1, t, τ2, ξ{u,v}

−1(t1), ξ
-1
{u,v}(e1), . . . , ξ

-1
{u,v}(tm), τ1, which contradicts V (K) being a valid dis-

crete Morse vector field.
Note that there is also a case where the closed gradient path in V (K ′) contains two

simplices which are the images of mirrors, but the argument is almost exactly the same, so
we omit it.

The argument concerning a vertex/edge gradient path is largely the same as the trian-
gle/edge case. If there were a nontrivial closed vertex/edge gradient path in V (K ′), then
ξ{u,v}(u) = ξ{u,v}(v) must be an element of the path. But because u, v are admissible ver-
tices, there must be a path in the spanning tree from u to v containing only local simplices.
Edge/vertex gradient paths are built on the spanning tree discussed in Section 3, so a closed
gradient path in V (K ′) implies that there is a cycle in the spanning tree built on K which
is clearly a contradiction.

Theorem 13. The number of critical simplices in K ′ as determined by V (K ′) is no more
than the number of critical simplices in K as determined by V (K).

Proof. Note that a simplex σ ∈ K ′ is only critical if an element of ξ-1{u,v}(σ) is critical. Hence,
the total number of critical simplices can only decrease.

The next theorem is our main theoretical result, which essentially implies that new vector
field induced by a contraction can be constructed from the old one only by local operations.

Theorem 14. If V (K) is a discrete Morse vector field induced by the filtration K0 ⊆ K1 ⊆
. . . ⊆ Km = K and some δ via Algorithm 1, and V (K ′) is the discrete Morse vector field
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induced by V (K) and contracting admissible edge {u, v}, then the filtration ξ{u,v}(K0) ⊆
ξ{u,v}(K1) ⊆ . . . ⊆ ξ{u,v}(Km) = K ′ and δ induce discrete Morse vector field V (K ′) on K ′.

The proof for this theorem is significantly more involved, so we break the proof into
multiple lemmas.

The first stage in showing Theorem 14 to be true is to demonstrate that there is a
correspondence between the vertex/edge minimum spanning tree that is constructed in K
and the vertex/edge minimum spanning tree that is constructed in K ′. We refer to the
former as T and the later as T ′. The trees T and T ′ are both constructed by building a
minimum spanning tree with the filtration K0 ⊆ K1 ⊆ . . . ⊆ Km in the case of T and
ξ{u,v}(K0) ⊆ ξ{u,v}(K1) ⊆ . . . ⊆ ξ{u,v}(Km) in the case of T ′. In particular, we define Ti and
T ′i to be the minimum spanning forest constructed by only considering those sublevel sets
with indices ≤ i. Hence, T0 ⊆ T1 ⊆ T2 ⊆ . . . ⊆ Tm = T and T ′0 ⊆ T ′1 ⊆ T ′2 ⊆ . . . ⊆ T ′m = T ′.
We let E(T ) denote the edge set of a tree T . These definitions give the following result.

Lemma 15. Let T, T ′, Ti, T
′
i be defined as above. For all i, E(ξ{u,v}(Ti)) = E(T ′i ).

Proof. We proceed by induction on i. Note that K0 = ∅, so ξ{u,v}(K0) = ∅, and it immedi-
ately follows that E(T ′0) = E(ξ{u,v}(T0)) = ∅.

We now assume that E(ξ{u,v}(Ti)) = E(T ′i ) and aim to show that E(ξ{u,v}(Ti+1)) =
E(T ′i+1). If Ti = Ti+1, then we are done. Hence, assume that ei+1 ∈ Ti+1 but ei+1 6∈ Ti. In
the case where ei+1 is vanishing, the result is immediate, as ξ{u,v}(ei+1) is a vertex. If ei+1

is a mirrored simplex which occurs after its partner in the filtration, then the image of the
lesser mirror must already be part of the forest, and hence ξ{u,v}(ei+1) ∈ E(Ti), and the proof
follows by the inductive hypothesis. If ei+1 is a mirror that precedes its mirror, or a nonlocal
edge, and ei+1 joins two trees in the forest built over K, then it follows that ξ{u,v}(ei+1) must
also. Else, ξ{u,v}(ei+1) causes a cycle in the vertex/edge spanning tree on K ′, which is not
possible because this implies a cycle in the spanning tree on K because vertex admissibility
requires a path in the spanning tree from u to v. But this implies that ei+1 does not join
two trees in the spanning forest, which contradicts our assumption.

This result immediately implies the following.

Corollary 16. Let e = {r, s} be an edge in K which is either a nonlocal simplex or a mirror
which occurs earlier in the filtration than its partner. If after introducing e to T there exists
a path from vertex r to some vertex x, then after introducing ξ{u,v}(e) there exists a path in
T ′ from ξ{u,v}(r) to ξ{u,v}(x).

We reference this corollary frequently in the remaining theorems.
For the next result, we define τ, τ ′, τi, τ

′
i analogously to T, T ′, Ti, T

′
i but for the trian-

gle/edge spanning forest. The result follows from essentially the same argument as Lemma
15, while controlling for the fact that when one mirrored simplex is in the triangle spanning
tree and the other is in the vertex spanning tree, their image is in the vertex spanning tree.

Lemma 17. Let τ, τ ′, τi, τ
′
i , T

′ be defined as above. For all i, E(ξ{u,v}(τi)) \ E(T ′) = E(τ ′i).
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While the previous two results show that the induced trees are the same, that is not to say
that the induced forests are the same. What remains to be shown is that for edge e 6= {u, v},
and e not a mirrored simplex which succeeds its partner in the total order, Pers(e) ≤ δ if
and only if Pers(ξ{u,v}(e)) ≤ δ. In the following proofs, we say that a simplex σ is introduced
at stage i if the simplex σ ∈ Ki, σ 6∈ Ki−1. Simplex σ is introduced after simplex τ if σ is
introduced at stage i and τ is introduced at stage j < i. In addition, when we introduce
an edge e, we use MaxV,MinV,MaxT,MinT to refer to the roots of the trees that the edge
has joined: MaxV refers to the vertex root with the greater height value, MaxT refers to the
triangle root with the greater height value, and MinT and MinV are defined as expected. In
addition, we use the notation h : K → R and h′ : K ′ → R to reflect the height value of a
simplex in K,K ′ respectively.

Lemma 18. For edge e 6= {u, v} which is not a mirrored simplex introduced after its partner,
h′(MaxV(ξ{u,v}(e))) ≤ h(MaxV(e)) and h′(MinV(ξ{u,v}(e))) ≤ h(MinV(e)).

Proof. When e = {r, s} is introduced to the spanning tree, there exists a path in the tree
from r to MaxV(e) and s to MinV(e) or vice-versa. Therefore, by Corollary 16, when
ξ{u,v}(e) is introduced, there exists a path from ξ{u,v}(r) and ξ{u,v}(s) to ξ{u,v}(MaxV(e)) and
ξ{u,v}(MinV(e)). MinV(e) and MaxV(e) refer to the minimum value in their respective trees,
and vertices can only reduce in value under ξ{u,v}, so the proof follows.

We prove a similar lemma for the edge/triangle tree.

Lemma 19. For edge e 6= {u, v} which is not a mirrored simplex introduced after its partner,
h′(MaxT(ξ{u,v}(e))) ≤ h(MaxT(e)) and h′(MinT(ξ{u,v}(e))) ≤ h(MinT(e)).

Proof. When an edge e is introduced, it forms a bridge between two triangle/edge trees. But
contracting an edge cannot merge two of these trees, because the image of a pair of mirrors
takes the place in the total order of whichever came first. But contracting can destroy
triangles that were MinT(e) or MaxT(e) for some edge e. Hence, the value of the maximum
triangle in each tree in the forest can only be reduced, and the lemma follows.

Recall that the persistence algorithm pairs simplices σ, τ where τ destroys a homological
class created by σ. An edge can pair with a vertex or a triangle depending on if it destroys
or creates a homological class. This is equivalent to saying that e is in the vertex/edge or
triangle/edge spanning tree, respectively.

The next two lemmas follow immediately from the previous two, and the fact that
Pers(e) = h(e)−h(MaxV(e)) for edges paired with vertices and Pers(e) = h(MinT(e))−h(e)
for edges paired with triangles.

Lemma 20. Let e 6= {u, v} be an edge paired with a triangle and not a mirrored simplex
introduced after its partner. If Pers(e) < δ, then Pers(ξ{u,v}(e)) < δ.

Lemma 21. Let e 6= {u, v} be an edge paired with a vertex and not a mirrored simplex
introduced after its partner. If Pers(e) ≥ δ, then Pers(ξ{u,v}(e)) ≥ δ.

The following two lemmas complete the proof of Theorem 14.
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Lemma 22. Let e 6= {u, v} be an edge paired with a triangle and not a mirrored simplex
introduced after its partner. If Pers(e) ≥ δ, then Pers(ξ{u,v}(e)) ≥ δ.

Proof. Note that Pers(e) = h(MinT(e))−h(e). Because e is nonlocal or mirrored with lower
height value than its partner, h′(ξ{u,v}(e)) = h(e). Therefore, the only way that Pers(e) ≥ δ
but Pers(ξ{u,v}(e)) < δ is if h′(MinT(ξ{u,v}(e))) < h(MinT(e)). Note that because e is
critical, MinT(e) must also be critical. Because the mirror which survives the contraction is
introduced first, and Kruskal’s is building a maximum spanning tree, it follows that MinT(e)
must be a vanishing simplex relative to {u, v}. But the only critical triangles which are
destroyed by contraction are isolated. That is, they can only reach other local simplices via V-
Paths. Therefore, there must be some local edge ω where h(ω) ≥ h(e) such that ω is critical.
In addition, h(MinT(ω)) ≤ h(MinT(e)), as ω was not paired with MinT(e), but connected
to its tree. Therefore, because h(MinT(ω)) − h(ω) ≥ δ, where h(MinT(ω)) ≤ h(MinT(e))
and h(ω) ≥ h(e), it follows that h′(MinT(ξ{u,v}(e))− h′(ξ{u,v}(e)) ≥ δ.

Lemma 23. Let e 6= {u, v} be an edge paired with a vertex and not a mirrored simplex
introduced after its partner. If Pers(e) < δ, then Pers(ξ{u,v}(e)) < δ.

Proof. First we consider the cases where u, v are admissible vertices because there exists a
local V -path from u to v or vice-versa. Label the edge in the path which occurs latest in the
total order on K as ω. If ω ≺ e, then the lemma follows trivially, as upon the introduction
of ω, there is already a path in the spanning tree between u to v, so contraction does not
make new areas accessible. Hence, ξ{u,v}(MaxV(e)) = MaxV(ξ{u,v}(e)), and lemma follows.
Thus, we assume that e ≺ ω. In such a case, then contracting {u, v} may complete a path so
that vertex ξ{u,v}(r) is reachable from ξ{u,v}(e) upon its introduction, but r is not reachable
from e. Note, however, that if it were the case that Pers(ξ{u,v}(e)) ≤ δ, then it necessarily
follows that h(MaxV(ω)) ≤ h′(MaxV(ξ{u,v}(e)). Because by assumption, ω has associated
persistence less than δ, it follows that h(ω)− h(MaxV(ω)) < δ. But h′(ξ{u,v}(e)) ≤ h(ω), so
it follows that h′(ξ{u,v}(e))−h(MaxV(ω)) < δ. Similarly, h′(MaxV(ξ{u,v}(e)) ≥ h(MaxV(ω)),
so it follows that h′(ξ{u,v}(e))−h′(MaxV(ξ{u,v}(e))) < δ. The case where there is a path from
u, v to a bystander vertex follows analogously.

Now, we consider the case where u, v are admissible vertices because u is critical, v is
critical, and {u, v} is critical and paired with a vertex in the persistence sense. In addition,
we note that a vertex-edge is critical if and only if it is paired with a critical vertex in the per-
sistence sense. Hence, because Pers(e) < δ, e is paired with neither u nor v. But contracting
u into v only lowers the value of their image, and thus ξ{u,v}(MaxV(e)) = MaxV(ξ{u,v}(e)).
Hence, h′(MaxV(ξ{u,v}(e)) = h(MaxV(e)), so Pers(e) < δ.

So because forests maintain their structure and the operator assigns vectors that point
along V -paths to minimum vertices and maximum triangles, Theorem 14 follows immedi-
ately.

6 Experimental results

In this section, the new contraction criteria is compared to those presented in [16], and
the theoretical guarantee’s utility is demonstrated for applications that rely on extracting
1-unstable manifolds.
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Dataset Initial Simplices New Remaining Simplices [16] Remaining Simplices % Reduction

Columbus 2,728,353 83,970.8 124,984.6 32.82

Los Alamos 2,728,353 49,106.6 74,756.6 34.31

Minneapolis 10,940,401 123,200.4 190,027.4 35.17

Aspen 10,940,401 48,418.8 62,778.8 22.87

Filigree 3,086,440 394,095.8 577,172.4 31.72

Isidore 6,626,810 822,053.2 1,159,809.8 29.12

Eros 2,859,566 361,723.8 516,992.2 30.03

Table 1: Coarseness data for δ = ε, where every edge with positive associated persistence is
critical.

Dataset Initial Simplices New Remaining Simplices [16] Remaining Simplices % Reduction

Columbus 2,728,353 15,609 16,065 2.84

Los Alamos 2,728,353 14,853 15,039 1.24

Minneapolis 10,940,401 33,703 34,669 2.79

Aspen 10,940,401 33,313 33,409 .29

Filigree 3,086,440 2,426.2 2,919.2 16.89

Isidore 6,626,810 8 8 0

Eros 2,859,566 20 20 0

Table 2: Coarseness data for δ =∞.

6.1 Unstable manifolds

Extracting the unstable 1-manifolds of a discrete Morse vector field has been used by various
authors for applications in cosmology, image skeletonization, and road network reconstruc-
tion [24, 25, 5]. An unstable 1-manifold is the set of all edges that can be reached from
a gradient path originating at a given critical edge. In [25], the authors showed that the
unstable 1-manifolds of a complex built from GPS trajectories correspond to a city’s roads.
We show a result about the structure of these unstable 1-manifolds under our contraction
operator.

Theorem 24. Let K, K ′, V (K), and V (K ′) be defined as in Section 4. For triangulated
manifold K equipped with vector field V (K), define U1(K,V (K)) to be the set of simplices

Figure 10: Frequency data corresponding to Beijing. Elevation corresponds to the number
of times that a GPS trajectory was recorded as colliding with the given point.
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Figure 11: A map of Beijing before (left, 22.5 million simplices) and after contraction (right,
1.5 million simplices) together with the unstable manifolds of all critical edges marked in
white. Note that the unstable manifolds maintain their structure after contraction.

Figure 12: The unstable manifolds corresponding to a map of Berlin, marked in white, with
1.97 million simplices (left), 456,000 simplices (middle), and 156,000 simplices(right).

in unstable 1-manifolds on K. Then U1(K
′, V (K ′)) ⊆ ξ{u,v}(U1(K,V (K))).

Proof. Consider σ ∈ U1(K
′, V (K ′)). We aim to show that σ ∈ ξ{u,v}(U1(K,V (K))). Since σ

is in an unstable manifold, there exists some critical edge e ∈ K ′ connected to σ by a gradient
path. Denote this gradient path e = e1, v1, . . . , σ. Since e is critical, by the proof of Theorem
13, an edge in ξ-1{u,v}(e) must be critical. We claim that there exists a gradient path from

some critical edge in ξ-1{u,v}(e) to some element of ξ-1{u,v}(σ). This follows from considering
the preimages of the gradient path. If every simplex in the path is the image of nonlocal
simplices to {u, v}, then the preimage of the gradient path is a gradient path connecting
ξ-1{u,v}(e) to ξ-1{u,v}(σ), so ξ-1{u,v}(σ) ∈ U1(K,V (K)) implying σ ∈ ξ{u,v}(U1(K,V (K))).

Hence, we assume that some element of the path is the image of simplices local to {u, v}.
Note that no simplex in the path other than σ or e can be the image of mirrored critical
simplices. If some simplex τ 6= e, σ were the image of mirrored critical simplices, τ would
necessarily be critical and the gradient path could not proceed beyond τ . Hence, u and
v are not both critical unless u, v map to σ, in which case the preimage of the gradient
path connects a critical edge in ξ-1{u,v}(e) to u or v, and we are done. Thus, assume there
is a gradient path from u to v or vice-versa, or there is a path from each of u and v to
some bystander vertex. The preimage of the gradient path ξ-1{u,v}(e1), ξ

-1
{u,v}(v1), . . . , ξ

-1
{u,v}(σ)

is not a gradient path, as for some vertex vi, ξ
-1
{u,v}(vi) contains two vertices. We use the

path guaranteed by vertex admissibility to fill the gap as needed, which then completes
a path from ξ-1{u,v}(e1) to ξ-1{u,v}(σ) in K. Hence, ξ-1{u,v}(σ) ∈ U1(K,V (K)) implying σ ∈
ξ{u,v}(U1(K,V (K))).

The image of critical mirrors under ξ{u,v} may not be critical, so equality is not guar-
anteed in Theorem 24. Experimentally, we show that it makes little difference in practice.
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Comparisons of computing the unstable manifolds on the complex before and after contrac-
tion can be seen in Figures 2,11,12, and 13. Notice that the unstable 1-manifolds in Figure
2 do not follow the “mountain ridges,” whilst those in Figure 11 do. To achieve this effect,
vertices are treated as if they had the negative of their function value. For a more thorough
treatment, we refer the reader to [25] or [7].

As the number of edges contracted increases, the accuracy of the unstable 1-manifolds
decreases. This is illustrated in Figures 11, 12, and 13. While the structure of the unstable
manifolds largely stays the same, a coarser representation contains fewer vertices, and hence
it results in a worse representation of the manifolds. Nevertheless, even at very coarse
representations, the unstable manifolds remain a good approximation. Notice that if the
only goal was to simplify the unstable 1-manifolds while maintaining their structure, then
an alternative approach would be to extract the unstable manifolds and simplify the induced
graph directly rather than dealing with the entire complex. But such an approach does not
provide a guarantee on the structure of the unstable manifolds in the contracted complex.

6.2 Granularity

As the new criteria subsume those which are given in [16], the new criteria permit for a
coarser representation of the triangulated manifold while still maintaining the structure of
the discrete Morse vector field. To test this, a discrete Morse vector field is assigned to a
triangulated dataset by the procedure described in Section 3 with some δ, and admissible
edges are contracted in a random order until none of the remaining edges are admissible.
We also experimented with contracting edges in order of their associated persistence, but
found that contracting in a random order did a much better job of preserving the quality
of the triangulation. A more thorough investigation of the impact of the edge contraction
order is left to future work. The resulting granularity is compared for δ = ∞ and δ = ε,
where ε is chosen such that only those edges with persistence equal to 0 are not critical.
Datasets are either terrains (Aspen, Los Alamos, Columbus, Minneapolis) and courtesy of the
National Elevation Dataset, or 2-manifolds without boundary, courtesy of the Aim@Shape
repository. The algorithm from Section 3 requires a height function defined on the vertices of
the triangulation, so the vertices of those datasets which are 2-manifolds without boundary
are equipped with a curvature approximation. Note that in the case of the terrains, we do
not contract edges on the boundary, as the link condition only applies when the edge is not
on the boundary [6].

Resulting data can be found in Table 1 for δ = ε and Table 2 for δ = ∞. Note that
for δ = ε, the new contraction criteria presents around a 30% reduction in simplices when
compared to the criteria presented in [16]. For δ =∞, the reduction is much more modest.
Applying Algorithm 1 with δ = ε results in many critical simplices, while δ =∞ produces the
minimum possible. Hence, these experiments demonstrate that much of the improvement
over the criteria in [16] comes from our contraction operator’s ability to destroy critical
simplices. Contraction images can be viewed in Figure 14 and Figure 15.
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Figure 13: The unstable manifolds corresponding to a map of Athens with 2.7 million sim-
plices (left), 860,000 simplices (middle), and 262,000 simplices(right).

Figure 14: A terrain near Los Alamos, New Mexico with 2.7 million simplices (left), 1.5
million simplices (middle), and 15,000 simplices(right).

Figure 15: The original Filigree dataset (top left 3.1 million simplices), the contracted Filigree
dataset (bottom left - 400,000 simplices), the original Eros dataset (top center - 2.8 million
simplices), the contracted Eros dataset (bottom center - 100,000 simplices), the original
Isidore dataset (top right - 6.6 million simplices), and the contracted Isidore dataset (bottom
right - 1.1 million simplices).
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7 Conclusion

7.1 Future work

Many open questions ensue from this work. This paper has developed a contraction operator
such that the resulting discrete Morse vector field is the same as the vector field induced by
the image of the filtration under the contraction map. A more general version of this problem
is to develop a contraction operator which controls the perturbation of the underlying discrete
Morse function.

Another natural extension to this work is to prove analogous results for algorithms that
generate discrete Morse vector fields on 2-complexes or higher dimensional manifolds. It has
been shown in [20] and [17] that computing an optimal discrete Morse vector field on an
arbitrary 2-complex is NP-hard, so it is natural to begin by proving such results for non-
optimal Morse vector fields. We plan to explore this direction in the future. In addition,
discrete Morse vector fields on higher dimensional manifolds have been explored in [20] and
[23]. The former presents a heuristic for 3-manifolds, while the later guarantees optimality
for specific cubical complexes. We are currently investigating if it is possible to prove results
analogous to the ones presented in this paper for those algorithms.

It may be possible to expand the contractibility criteria substantially if the definition
of “local” is relaxed. This is of particular interest when {u, v} is critical. It may not be
necessary to require u and v each to be critical, but then additional information is needed
to guarantee that contraction does not cause a closed gradient path.

The authors of [16] established a data structure for storing a hierarchy of discrete Morse
vector fields across edge contractions. Permitting additional cases requires more memory in
the data structure, as every contraction must be reversible. At the very least, the experiments
in Section 6 suggest that it may be worth incorporating contractions which destroy critical
edges.
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