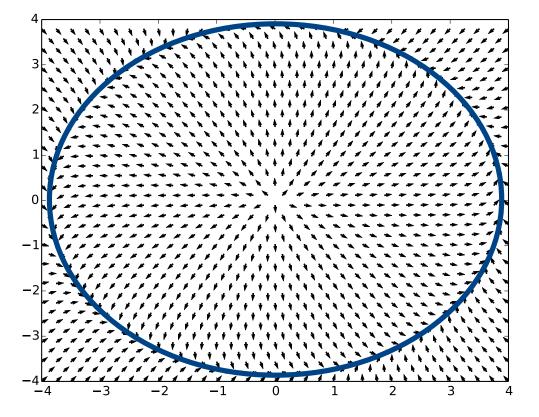
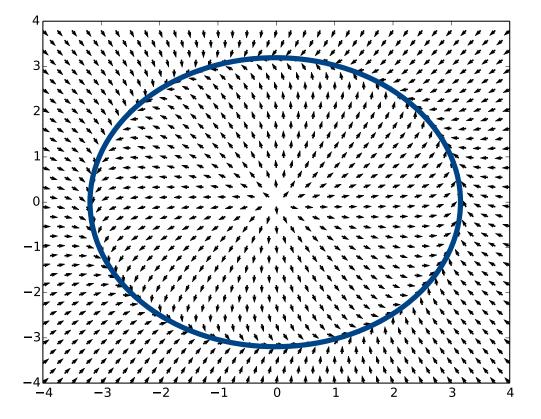
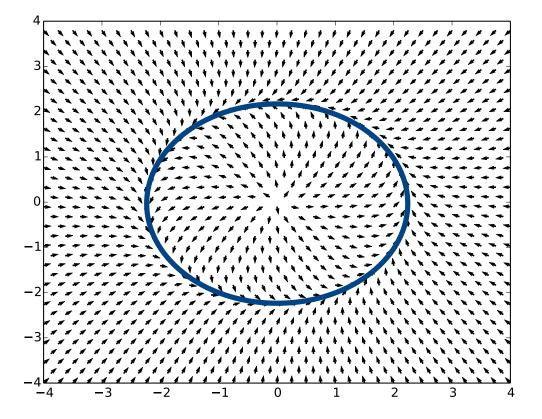
Tracking Dynamical Features via Continuation and Persistence

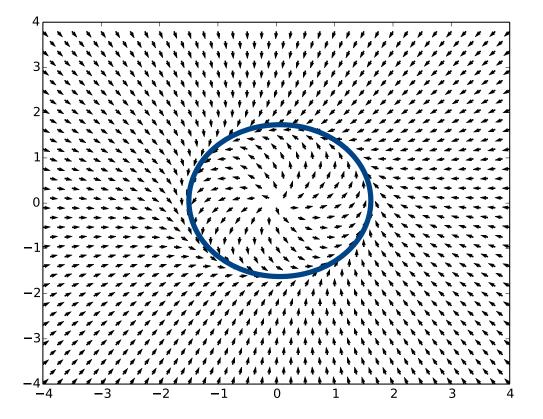
Tamal K. Dey, Michał Lipiński, Marian Mrozek, Ryan Slechta, SoCG 2022

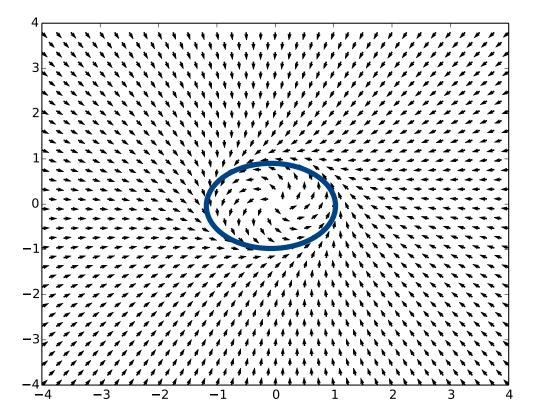
$$x' = -y + x(\lambda - x^2 - y^2)$$
$$y' = x + y(\lambda - x^2 - y^2)$$

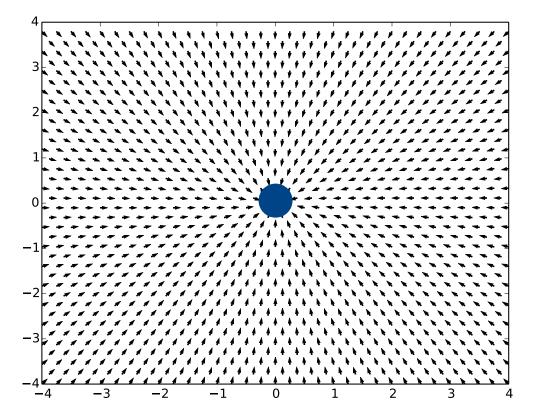




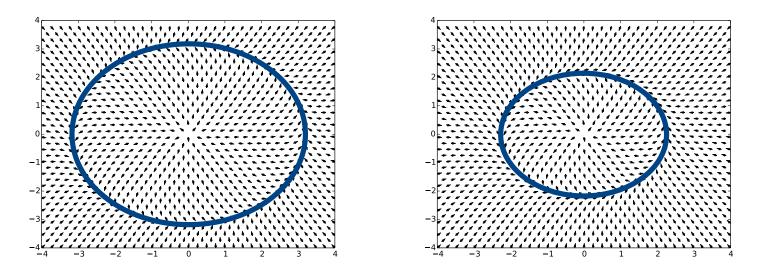






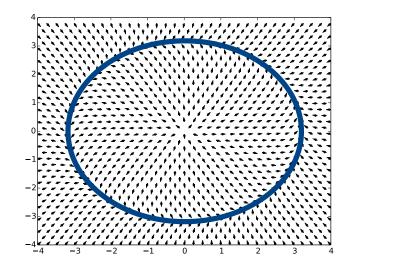


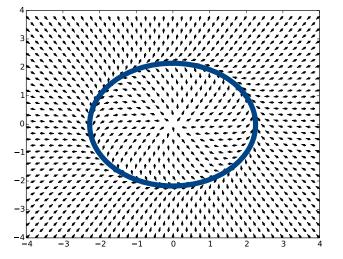
"The Same" Invariant Set



Theorem [Conley, Eaton, '71]: If f is a flow and N is an isolating neighborhood for f, and if f' is a sufficiently small perturbation of f, then N is an isolating neighborhood for f'.

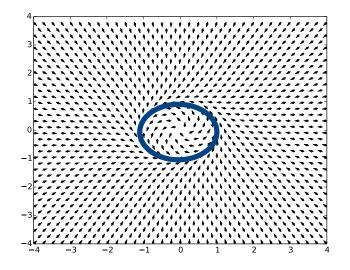
"The Same" Invariant Set

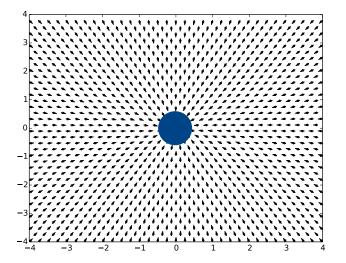




The two invariant sets are related by a *continuation*.

Different Invariant Set





The Problem

In the combinatorial setting, can we...

- 1. Track the presence of "the same" invariant set across multiple dynamical systems?
- 2. Use persistence to continue tracking in the case of a bifurcation (or a reverse-bifurcation)?

Multivectors

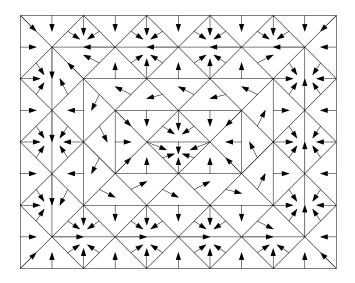
Let K denote a simplicial complex and \leq denote the face relation.

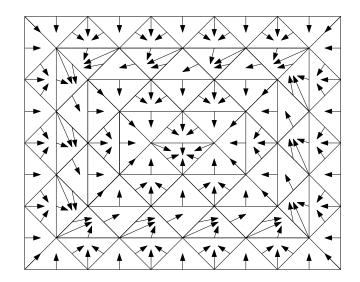
Definition: A <u>multivector</u> V is a convex subset of K with respect to \leq .

Definition: A <u>multivector field</u> \mathcal{V} is a partition of K into multivectors.

$$\mathcal{V} = \{\{b\}, \{c, bc\}, \{a, ab, ac, abc\}\}$$

Multivector Fields





Multivector Fields as a Dynamical System

Let
$$\sigma \in K$$
. Then $\operatorname{cl}(\sigma) = \{ \tau \in K \mid \tau \leq \sigma \}.$

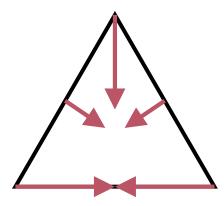
 $[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ

Dynamics generator $F_{\mathcal{V}}$: $K \multimap K$ defined as:

$$F_{\mathcal{V}}\left(\sigma\right) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}\left(\sigma\right)$$

Multivector Fields as a Dynamical System

$$F_{\mathcal{V}}\left(\sigma\right) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}\left(\sigma\right)$$



Multivector field

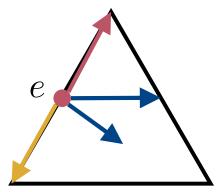
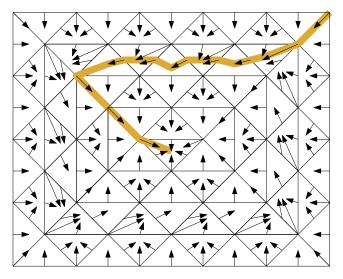


Image of marked edge \mathcal{C} Blue simplices are in $[e]_{\mathcal{V}} \setminus cl(e)$ Yellow simplices are in $cl(e) \setminus [e]_{\mathcal{V}}$ Red simplices are in $[e]_{\mathcal{V}} \cap cl(e)$

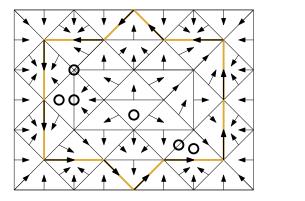
Paths

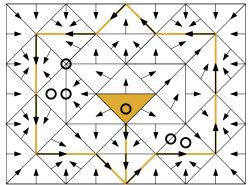
<u>Definition</u>: A path is a finite sequence of simplices $\sigma_1, \sigma_2, \ldots, \sigma_n$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$



Solutions

<u>Definition</u>: A solution is a bi-infinite sequence of simplices $\dots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \dots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

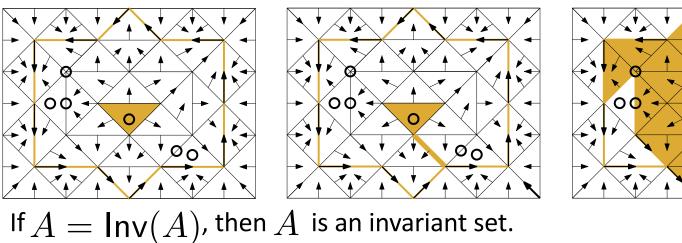




Invariant Sets

<u>Definition</u>: Let $A \subseteq K$. The invariant part of A, denoted $\operatorname{Inv}(A)$, is the set of simplices in A which appear in an essential solution in A.

00

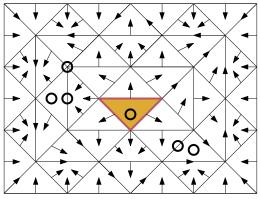


Index Pairs

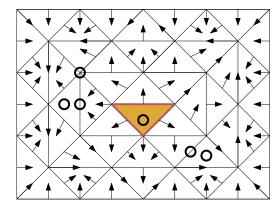
Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

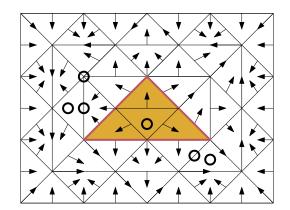
1. $F_{\mathcal{V}}(E) \cap P \subset E$, 2. $F_{\mathcal{V}}(P \setminus E) \subseteq P$, and 3. $A = \operatorname{Inv}(P \setminus E)$

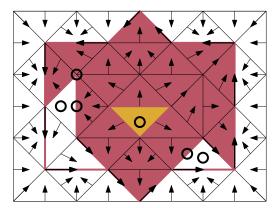
Then (P, E) is an index pair for A.



Index Pairs are Not Unique





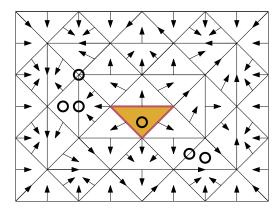


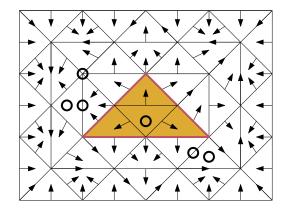
Conley Index

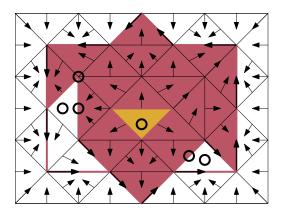
<u>Definition</u>: Let (P,E) be an index pair for A . Then the k-dimensional Conley Index is given by $H_k(P,E)$.

<u>Theorem [LKMW 2019]</u>: The k-dimensional Conley Index for A is well defined.

Conley Indices



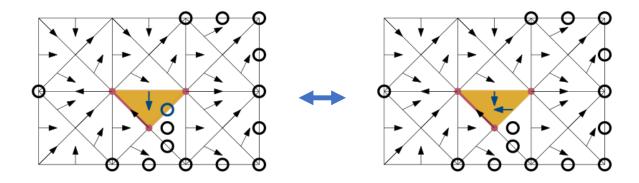




$H_2(R \cup Y, R) = \mathbb{Z}_2$

Combinatorial Continuation

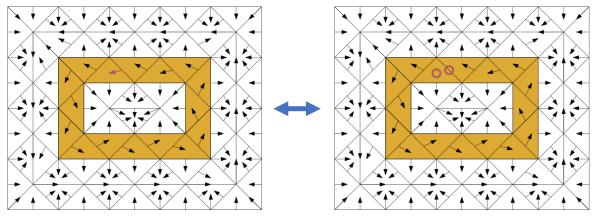
Definition: A sequence of isolated invariant sets is a *continuation* if there is a common index pair for each consecutive pair in the sequence.



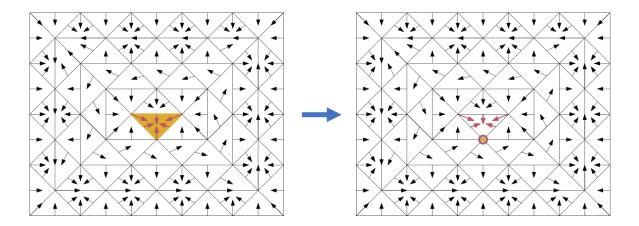
Small Perturbations

Definition: Let \mathcal{V} denote a multivector field. The multivector field \mathcal{V}' is an *atomic refinement* of \mathcal{V} if $|\mathcal{V} \setminus \mathcal{V}'| = 1$ and $|\mathcal{V}' \setminus \mathcal{V}| = 2$. Symmetrically, \mathcal{V} is an *atomic coarsening* of \mathcal{V}' .

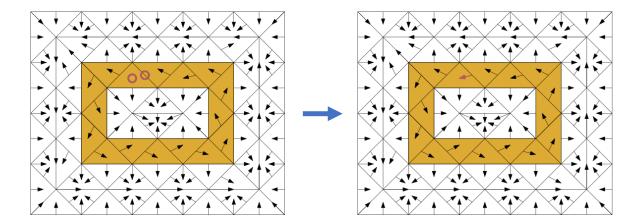
Theorem[DLMS22]: Every pair of multivector fields can be transformed into each other by a sequence of atomic rearrangements.



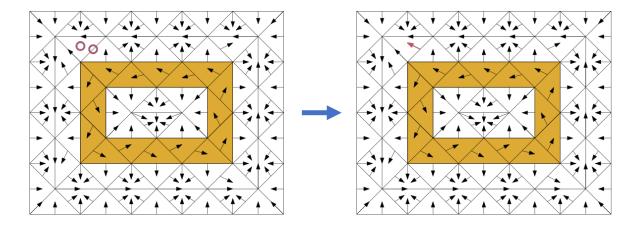
 $\underline{ \text{Theorem[DLMS22]:}} \text{ Let } S \text{ denote an isolated invariant set under } \mathcal{V} \text{ , and let } \mathcal{V}' \text{ denote an atomic refinement of } \mathcal{V} \text{ . Then } \operatorname{Inv}_{\mathcal{V}'}(\mathsf{S}) \text{ is an invariant set and } (\mathsf{cl}(\mathsf{S}),\mathsf{mo}(\mathsf{S})) \text{ is an index pair for both.}$



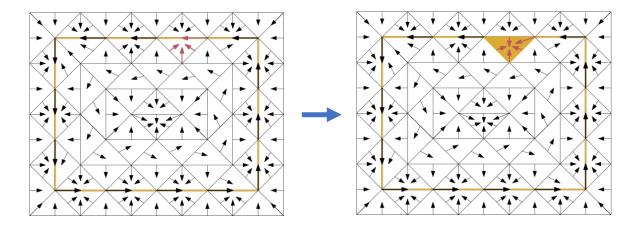
 $\underline{ \text{Theorem[DLMS22]:}} \text{ Let } S \text{ denote an isolated invariant set under } \mathcal{V} \text{ , and let } \mathcal{V}' \text{ denote an atomic coarsening of } \mathcal{V} \text{ where the unique bifurcating multivector is contained in } S. Then $ Inv_{\mathcal{V}'}(S)$ is an invariant set and $ (cl(S), mo(S))$ is an index pair for both. }$

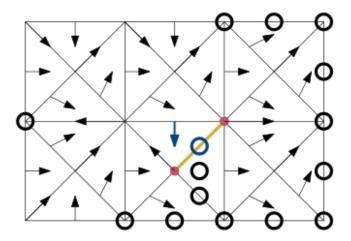


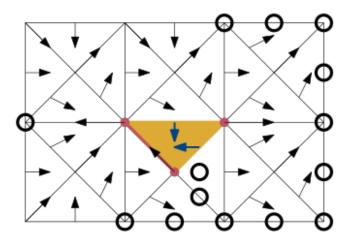
 $\begin{array}{l} \underline{ \mbox{Theorem[DLMS22]:}} \mbox{ Let } S \mbox{ denote an isolated invariant set under } \mathcal{V} \mbox{ , and let } \mathcal{V}' \mbox{ denote an atomic coarsening of } \mathcal{V} \mbox{ where the unique bifurcating multivector does not intersect } S. \mbox{ Then } \mbox{Inv}_{\mathcal{V}'}(S) \mbox{ is an invariant set and } (cl(S), mo(S)) \mbox{ is an index pair for both.} \end{array}$

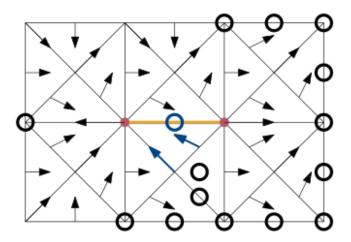


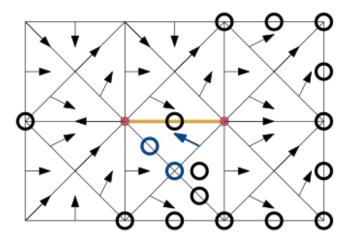
More complicated. Bifurcating vector intersects S but isn't contained in S. Let $A=\langle S\cup V
angle_{\mathcal{V}}$ denote the minimal \mathcal{V} -compatible, convex set containing S.

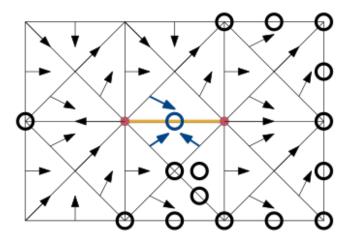


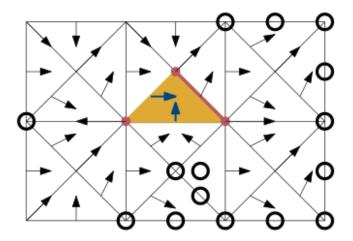


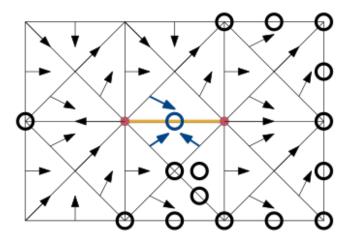


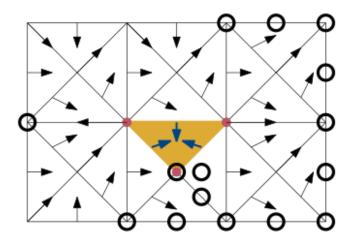




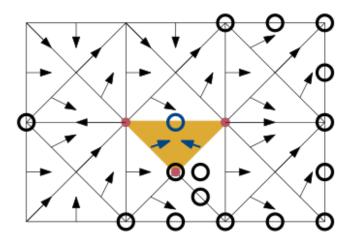






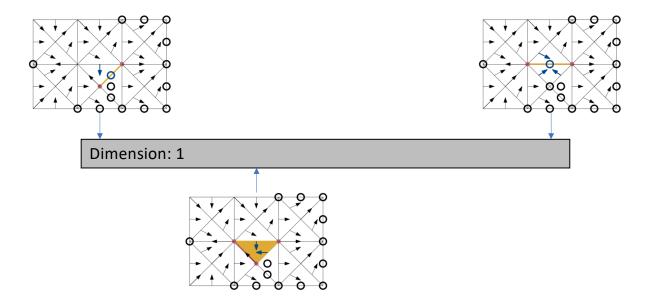


Continuation breaks!!!



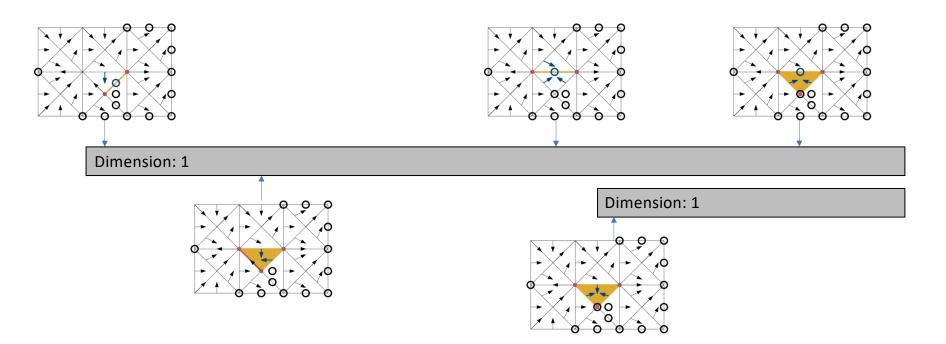
Solution: Persistence

Theorem[DLMS22]: A sequence of index pairs corresponding to a continuation can be converted to a relative zigzag filtration with a "static" barcode.



Solution: Persistence

If S and S' don't share an index pair when using case 4, compute persistence instead!



Conclusion & Future Work

- In this presentation: devised method for tracking invariant set. But...
- Order of atomic rearrangements?
- Inference?