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Overview & Outline

• Persistence
• Combinatorial Dynamical Systems & Conley Index
• Capturing changes in Dynamical Systems via Persistence



Persistent Homology

Summarizes changing homology of a filtration [ELZ00]

K1 ✓ K2 ✓ . . . ✓ Kn = K
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Persistence Example

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

K =

u

v z

K0 ⇢ K1 ⇢ K2 ⇢ K3 ⇢ K4 ⇢ K5 ⇢ K6

✓ ✓ ✓ ✓ ✓ ✓



Zigzag Persistence 

✓ ◆

K1 ✓ K2 ◆ K3 ✓ . . . ◆ Kn



“Level Set” Persistence 

✓ ✓

✓ ✓

◆ ◆

◆ ◆
[CDM09] [DW07]  



Level Set Barcode
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Multivectors

Let       denote a simplicial complex and        denote the face relation. 

Definition: A multivector is a convex subset of       with respect to      .

Definition: A multivector field is a partition of        into multivectors.V

K 

V K 

K
a

b c

V = {{b}, {b, bc}, {a, ab, ac, abc}}



Multivector Fields



Multivector Fields as a Dynamical System

Let                  . Then                                                             .

denotes the vector in       containing 

Dynamics generator                                     defined as: 

� 2 K cl(�) = {⌧ 2 K | ⌧  �}

�[�]V V

FV : K ( K

FV (�) = [�]V [ cl (�)



Combinatorial Dynamical Systems



Paths

Definition: A path is a finite sequence of simplices 
such that 

�1,�2, . . . ,�n

�i+1 2 FV (�i)



Solutions

Definition: A solution is a bi-infinite sequence of simplices 
such that . . . ,��1,�0,�1,�2, . . . �i+1 2 FV (�i)



Definition: A solution is a bi-infinite sequence of simplices 
such that

But as                                                       , every simplex gives a solution! 

Solutions

. . . ,��1,�0,�1,�2, . . . �i+1 2 FV (�i)

FV (�) = [�]V [ cl (�)



Critical Multivectors

Definition: Let                  .  The mouth of A is defined as 

Definition: A multivector is critical if there exists a k such that 
is nontrivial. 

A ✓ K
mo (A) := cl (A) \A

[�]V
Hk(cl ([�]V) ,mo ([�]V))



Critical Multivectors

Critical:

Regular: 



Essential Solutions

Definition: Let                                                        denote a solution. If for 
each         where               is noncritical, there exists a                and   
where                                      and                                   , 
then                                                         is an essential solution.

. . . ,��1,�0,�1,�2, . . .
[�i]V�i j > i

[�i]V 6= [�j ]V
. . . ,��1,�0,�1,�2, . . .

j0 < i
[�i]V 6= [�j0 ]V



Invariant Sets

Definition: Let                 .  The invariant part of      , denoted                   , 
is the set of simplices in       which appear in an essential solution in     . 

If                            , then      is an invariant set.    

A ✓ K Inv(A)A
A A

A = Inv(A) A



Invariant Sets

Definition: Let       denote an invariant set. If      is equal to a union of 
multivectors, then       is      -compatible. 

From now on, assume that invariant sets are      -compatible.     

A A
A V

V



Isolated Invariant Sets

Definition: Let                               , where       is an invariant set and      is 
closed (i.e.                            ). If every path in N with endpoints in      is 
contained in     , then       is an isolated invariant set, and       is an 
isolating neighborhood for     .  

AA ✓ N ✓ K N
N = cl(N) A
A A N

A



Isolated Invariant Sets

Note: We have already seen that the yellow invariant set is not isolated
by the rectangle. But does a different neighborhood isolate it?



Index Pairs

Definition: Let         be an isolated invariant set, and        and        closed 
sets such that                  . If:
1. ,
2. , and
3.

Then                   is an index pair for     . 

A E P
E ✓ P

FV(E) \ P ⇢ E
FV(P \ E) ✓ P
A = Inv(P \ E)

(P,E) A



Conley Index

Theorem [LKMW2019]: Let         denote an isolated invariant set.  The 
pair                              is an index pair for       . 

A
(cl(A),mo(A)) A



Index Pairs are Not Unique



Conley Index

Definition: Let                    be an index pair for      . Then the k-
dimensional Conley Index is given by                       .

Theorem [LKMW 2019]: The k-dimensional Conley Index for     is well 
defined. 

(P,E) A
Hk(P,E)

A



Conley Indices

H2(R [ Y,R) = Z2



Conley Indices?
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Overview

Persistence: capture changing homology of spaces

But what about dynamical systems? 

⊆ ⊇ ⊆



Motivating Example: Hopf Bifurcation

𝑥! = −𝑦 + 𝑥 𝜆 − 𝑥" − 𝑦"

𝑦! = 𝑥 + 𝑦 𝜆 − 𝑥" − 𝑦"



Motivating Example: Hopf Bifurcation

𝜆 ≪ 0



Motivating Example: Hopf Bifurcation

𝜆 = 0



Motivating Example: Hopf Bifurcation

𝜆 = 1



Motivating Example: Hopf Bifurcation

𝜆 = 2.5



Motivating Example: Hopf Bifurcation

𝜆 = 5



Motivating Example: Hopf Bifurcation

𝜆 = 10



Motivating Example: Hopf Bifurcation

𝜆 = 15



Motivating Example: Hopf Bifurcation

𝜆 = 17.5



Motivating Example: Hopf Bifurcation

Note: attractor from                      to 

Can we use persistence to capture this, or a related feature?

𝜆 = −∞ 𝜆 = 16



Motivating Example: Hopf Bifurcation

Note: attractor from                      to 

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

𝜆 = −∞ 𝜆 = 16
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Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation

Note: attractor from                      to 

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

𝜆 = −∞ 𝜆 = 16



Conley Index Persistence

First attempt: for each                                     , compute an isolated 
invariant set,                                      and corresponding index pairs. 

Gives a relative zigzag filtration:

Problem:                                                      generally not an index pair.   

V1,V2, . . . ,Vn
A1, A2, . . . , An

(cl(A1),mo(A1)), (cl(A2),mo(A2)), . . . , (cl(An),mo(An))

. . . ✓ (cl(Ai),mo(Ai)) ◆ (cl(Ai) \ cl(Ai+1),mo(Ai) \mo(Ai+1)) ✓ (cl(Ai+1),mo(Ai+1)) ◆ . . .

(cl(Ai) \ cl(Ai+1),mo(Ai) \mo(Ai+1))



Intersection Example



Index Pairs in an Isolating Neighborhood

Let                                   for closed      ,      ,       , and                  .  If:
1. ,
2. ,
3. , and
4.
then                  is an index pair in       .

E NP A ✓ N
FV(P ) \N ✓ P

FV(P \ E) ✓ N
A = Inv(P \ E)
(P,E) N

FV(E) \N ✓ E

E ⇢ P ✓ N



Push Forward

Let                     denote an arbitrary set in some closed       . Then the 
push forward of      in       is        together with all simplices in      which 
are reachable from paths originating in       and contained in     . 

A ✓ K N
NA A N

A N



Finding Index Pairs in N

Theorem: The push forward in       of an index pair is an index pair in N N



Index Pairs in an Isolating Neighborhood

Theorem: Index Pairs in        are index pairs. 

Definition: Let        ,        denote multivector fields over      . The intersection 
of multivector fields is given by 

Theorem: Let                      ,                     denote index pairs in      under      ,       . 
The pair                                                is an index pair in       under

for                                                                  . 

N

V1\V2 = {V1 \ V2 | V1 2 V1, V2 2 V2}

V1 V2 K

(P1, E1) (P2, E2)
(P1 \ P2, E1 \ E2)

N V1 V2
N

V1\V2 Inv((P1 \ P2) \ (E1 \ E2))



Intersection Example

All simplices in N, Yellow union 
Red is P, and Red is E



Conley Index Persistence: New Strategy

Fix      , and  for each                                     , compute the maximal 
invariant set in      , denoted                                     ,  and corresponding 
index pairs. 

Gives a relative zigzag filtration:

V1,V2, . . . ,Vn

(cl(A1),mo(A1)), (cl(A2),mo(A2)), . . . , (cl(An),mo(An))

N
N A1, A2, . . . , An

(pfN (clAi), pfN (moAi)) ◆ (pfN (clAi) \ pfN (clAi+1), pfN (moAi) \ pfN (moAi+1)) ✓ (pfN (clAi+1), pfN (moAi+1))



Conley Index Persistence



Problem: Noise Resilience

All simplices in N, Yellow union 
Red is P, and Red is E



Solution: Make E Smaller



Conley Index Persistence

Proposition: Let                   denote an index pair for        in       .  If    
is a regular multivector such that                                 is closed, 

then                      is an index pair in          for        .   

(P,E) A N
V ✓ E E0 := E \ V

(P,E0) N A



Conley Index Persistence

Proposition: Let                   denote an index pair for        in       .  If    
is a regular multivector such that                                 is closed, 

then                      is an index pair in          for        .   

(P,E) A N
V ✓ E E0 := E \ V

(P,E0) N A



Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away 
from the isolated invariant set. 
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Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away 
from the isolated invariant set. 



Algorithm

MakeNoiseResilient( P, E, A,     ):

while there exists a regular multivector such that                  is 
closed and                         :

�

E \ V
d(V,A)  �

E  E \ V

V ⇢ E



Multivector Removal Strategy

Theorem: This algorithm outputs index pairs



Conley Index Persistence: Variable N

Given a “seed” isolated invariant set and isolating neighborhood, can 
we modify N to track changes to the invariant set across multivector
fields? 



Conley Index Persistence: Variable N

Given a “seed” isolated invariant set and isolating neighborhood, can 
we modify N to track changes to the invariant set across multivector
fields? 



Pitchfork Bifurcation

dx

dt
= �x� x3

dy

dt
= �y



Pitchfork Bifurcation



Pitchfork Bifurcation
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Pitchfork Bifurcation



Pitchfork Bifurcation
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Pitchfork Bifurcation



Pitchfork Bifurcation



Pitchfork Bifurcation



Pitchfork Bifurcation



Pitchfork Bifurcation – Previous Technique
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Pitchfork Bifurcation – Previous Technique
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Pitchfork Bifurcation – Previous Technique



Pitchfork Bifurcation – Previous Technique



Pitchfork Bifurcation – Previous Technique



Conley Index Persistence



Conley Index Persistence: Variable N

Have a sequence of isolated invariant sets                                     
isolated by                                        (        isolated by         and              ).   

A1, A2, . . . , An

N1, N2, . . . , Nn Ai Ni

(pfNi
(cl(Ai)), pfNi

(mo(Ai))) ◆

(pfNi+1
(cl(Ai+1)), pfNi+1

(mo(Ai+1))) ◆

(pfNi
(cl(Ai)) \ pfNi

(cl(Ai+1)), pfNi
(mo(Ai)) \ pfNi

(mo(Ai+1)))

(pfNi+1
(cl(Ai+1)) \ pfNi+1

(cl(Ai+2)), pfNi+1
(mo(Ai+1)) \ pfNi+1

(mo(Ai+2)))

Ni�1

✓ (pfNi
(cl(Ai+1)), pfNi

(mo(Ai+1)))

✓ (pfNi+1
(cl(Ai+2)), pfNi+1

(mo(Ai+2)))



Conley Index Persistence: Variable N

How to connect the two index pairs?

(pfNi
(cl(Ai+1)), pfNi

(mo(Ai+1)))

(pfNi+1
(cl(Ai+1)), pfNi+1

(mo(Ai+1)))



Conley Index Persistence: Variable N

Theorem: If                      , are strong index pairs for        in 
, where          is isolated by                                        , then

is an index pair for
in   

(P1, E1) (P2, E2)
N1, N2 N1, N2, N1 [N2
(pfN1[N2

(P1 [ P2), pfN1[N2
(E1 [ E2))

A
A

A N1 [N2



Conley Index Persistence: Variable N

Strategy replace

and

with 

(pfNi[Ni+1
(cl(Ai+1)), pfNi[Ni+1

(mo(Ai+1)))

(pfNi
(cl(Ai+1)), pfNi

(mo(Ai+1)))

(pfNi+1
(cl(Ai+1)), pfNi+1

(mo(Ai+1)))



Conley Index Persistence: Variable N

To summarize, given                                        isolated by                                        ,
where each         is isolated by                           , we obtain a zigzag filtration.

But given          and         , how to find                               and                             ?   

A1, A2, . . . , An N1, N2, . . . , Nn

Ai Ni [Ni+1

A1 N1 A2, . . . , An N2, . . . , Nn



Finding R

Strategy: Given          ,         , define a “collar”      around       , then find set 
of simplices      so that          is isolated by                             . 

Take to be the maximal invariant set in         

How to find       ? 

N1 A1 C A1
R A1 N1 [ C \R

N2 := C \R

A2 N2

R



Finding R

FindR(A,  N,    ):

denotes a     -collar of A 
while there exists a path in         from A to A’:

Let       denote the last simplex not in A’
add all cofaces of       to R

return R  

�

A0 = pbN (A) = {� 2 N | A \ pfN ({�}) 6= ;}

C 0 �
C 0

�
�



Finding R

Theorem: The set                      is closed.

Theorem: The invariant set          is isolated by   A

C 0 \R

N [ (C 0 \R)



Pitchfork Bifurcation: Variable N
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Pitchfork Bifurcation: Variable N



Pitchfork Bifurcation: Variable N



Conclusion & Future Work

- Stability? 

- Inference? 
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