Persistence of the Conley Index in Combinatorial Dynamical Systems

Tamal K. Dey, Marian Mrozek, and Ryan Slechta

Overview \& Outline

- Persistence
- Combinatorial Dynamical Systems \& Conley Index
- Capturing changes in Dynamical Systems via Persistence

Persistent Homology

Summarizes changing homology of a filtration [ELZOO]

$$
K_{1} \subseteq K_{2} \subseteq \ldots \subseteq K_{n}=K
$$

Persistence Example

Persistence Example

Persistence Example

Persistence Example

$K_{0} \subset K_{1} \subset K_{2} \subset K_{3} \subset K_{4} \subset K_{5} \subset K_{6}$

$$
0 \leq 0 \geq 0
$$

"Level Set" Persistence

$-\square \geq 0 \subseteq 10 \geq 0$

[CDM09] [DW07]

Level Set Barcode

Overview \& Outline

- Persistence
- Combinatorial Dynamical Systems \& the Conley Index
- Capturing changes in Dynamical Systems via Persistence

Multivectors

Let K denote a simplicial complex and \leq denote the face relation. Definition: A multivector V is a convex subset of K with respect to \leq.

Definition: A multivector field \mathcal{V} is a partition of K into multivectors.

Multivector Fields

Multivector Fields as a Dynamical System

Let $\sigma \in K$. Then $\operatorname{cl}(\sigma)=\{\tau \in K \mid \tau \leq \sigma\}$.
$[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ
Dynamics generator $F_{\mathcal{V}}: K \multimap K$ defined as:

$$
F_{\mathcal{V}}(\sigma)=[\sigma]_{\mathcal{V}} \cup \mathrm{cl}(\sigma)
$$

Combinatorial Dynamical Systems

Paths

Definition: A path is a finite sequence of simplices $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

Solutions

Definition: A solution is a bi-infinite sequence of simplices
$\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

Solutions

Definition: A solution is a bi-infinite sequence of simplices
$\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

But as $F_{\mathcal{V}}(\sigma)=[\sigma]_{\mathcal{V}} \cup \mathrm{Cl}(\sigma)$, every simplex gives a solution!

Critical Multivectors

Definition: Let $A \subseteq K$. The mouth of A is defined as $\mathrm{mo}(A):=\mathrm{cl}(A) \backslash A$

Definition: A multivector $[\sigma]_{\mathcal{V}}$ is critical if there exists a k such that $H_{k}\left(\mathrm{cl}\left([\sigma]_{\mathcal{V}}\right), \operatorname{mo}\left([\sigma]_{\mathcal{V}}\right)\right)$ is nontrivial.

Critical Multivectors

Critical:

Regular:

Essential Solutions

Definition: Let ... $, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ denote a solution. If for each σ_{i} where $\left[\sigma_{i}\right]_{\mathcal{V}}$ is noncritical, there exists a $j>i$ and $j^{\prime}<i$ where $\left[\sigma_{i}\right]_{\mathcal{V}} \neq\left[\sigma_{j}\right]_{\mathcal{V}}$ and $\left[\sigma_{i}\right]_{\mathcal{V}} \neq\left[\sigma_{j^{\prime}}\right]_{\mathcal{V}}$, then $\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ is an essential solution.

Invariant Sets

Definition: Let $A \subseteq K$. The invariant part of A, denoted $\operatorname{lnv}(A)$, is the set of simplices in A which appear in an essential solution in A.

If $A=\operatorname{lnv}(A)$, then A is an invariant set.

Invariant Sets

Definition: Let A denote an invariant set. If A is equal to a union of multivectors, then A is \mathcal{V}-compatible.

From now on, assume that invariant sets are \mathcal{V}-compatible.

Isolated Invariant Sets

Definition: Let $A \subseteq N \subseteq K$, where A is an invariant set and N is closed (i.e. $N=\overline{\mathrm{cl}}(N)$). If every path in N with endpoints in A is contained in A, then A is an isolated invariant set, and N is an isolating neighborhood for A.

Isolated Invariant Sets

Note: We have already seen that the yellow invariant set is not isolated by the rectangle. But does a different neighborhood isolate it?

Index Pairs

Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

1. $F_{\mathcal{V}}(E) \cap P \subset E$,
2. $F_{\mathcal{V}}(P \backslash E) \subseteq P$, and
3. $A=\operatorname{lnv}(P \backslash E)$

Then (P, E) is an index pair for A.

Conley Index

Theorem [LKMW2019]: Let A denote an isolated invariant set. The pair $(\mathrm{cl}(A), \operatorname{mo}(A))$ is an index pair for A.

Index Pairs are Not Unique

Conley Index

Definition: Let (P, E) be an index pair for A. Then the kdimensional Conley Index is given by $H_{k}(P, E)$.

Theorem [LKMW 2019]: The k-dimensional Conley Index for A is well defined.

Conley Indices

$$
H_{2}(R \cup Y, R)=\mathbb{Z}_{2}
$$

Conley Indices?

Overview \& Outline

- Persistence
- Combinatorial Dynamical Systems \& the Conley Index
- Capturing changes in Dynamical Systems via Persistence

Overview

Persistence: capture changing homology of spaces

But what about dynamical systems?

Motivating Example: Hopf Bifurcation

$$
\begin{gathered}
x^{\prime}=-y+x\left(\lambda-x^{2}-y^{2}\right) \\
y^{\prime}=x+y\left(\lambda-x^{2}-y^{2}\right)
\end{gathered}
$$

Motivating Example: Hopf Bifurcation

$$
\lambda=15
$$

Motivating Example: Hopf Bifurcation

Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda=-\infty$ to $\lambda=16$

Can we use persistence to capture this, or a related feature?

Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda=-\infty$ to $\lambda=16$

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

Motivating Example: Hopf Bifurcation

Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda=-\infty$ to $\lambda=16$

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

Conley Index Persistence

First attempt: for each $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n}$, compute an isolated invariant set, $A_{1}, A_{2}, \ldots, A_{n}$ and corresponding index pairs.

$$
\left(\mathrm{cl}\left(A_{1}\right), \operatorname{mo}\left(A_{1}\right)\right),\left(\mathrm{cl}\left(A_{2}\right), \operatorname{mo}\left(A_{2}\right)\right), \ldots,\left(\operatorname{cl}\left(A_{n}\right), \operatorname{mo}\left(A_{n}\right)\right)
$$

Gives a relative zigzag filtration:

$$
\ldots \subseteq\left(\operatorname{cl}\left(A_{i}\right), \operatorname{mo}\left(A_{i}\right)\right) \supseteq\left(\operatorname{cl}\left(A_{i}\right) \cap \mathrm{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i}\right) \cap \operatorname{mo}\left(A_{i+1}\right)\right) \subseteq\left(\operatorname{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i+1}\right)\right) \supseteq \ldots
$$

Problem: $\left(\operatorname{cl}\left(A_{i}\right) \cap \mathrm{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i}\right) \cap \operatorname{mo}\left(A_{i+1}\right)\right)$ generally not an index pair.

Intersection Example

Index Pairs in an Isolating Neighborhood

Let $E \subset P \subseteq N$ for closed P, E, N, and $A \subseteq N$. If:

1. $F_{\mathcal{V}}(P) \cap N \subseteq P$,
2. $F_{\mathcal{V}}(E) \cap N \subseteq E$,
3. $F_{\mathcal{V}}(P \backslash E) \subseteq N$, and
4. $A=\operatorname{lnv}(P \backslash E)$
then (P, E) is an index pair in N.

Push Forward

Let $A \subseteq K$ denote an arbitrary set in some closed N. Then the push forward of A in N is A together with all simplices in N which are reachable from paths originating in A and contained in N.

Finding Index Pairs in N

Theorem: The push forward in N of an index pair is an index pair in N

Index Pairs in an Isolating Neighborhood

Theorem: Index Pairs in N are index pairs.

Definition: Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ denote multivector fields over K. The intersection of multivector fields is given by

$$
\mathcal{V}_{1} \bar{\cap} \mathcal{V}_{2}=\left\{V_{1} \cap V_{2} \mid V_{1} \in \mathcal{V}_{1}, V_{2} \in \mathcal{V}_{2}\right\}
$$

Theorem: Let $\left(P_{1}, E_{1}\right),\left(P_{2}, E_{2}\right)$ denote index pairs in N under $\mathcal{V}_{1}, \mathcal{V}_{2}$. The pair $\left(P_{1} \cap P_{2}, E_{1} \cap E_{2}\right)$ is an index pair in N under $\mathcal{V}_{1} \bar{\cap} \mathcal{V}_{2}$ for $\operatorname{Inv}\left(\left(P_{1} \cap P_{2}\right) \backslash\left(E_{1} \cap E_{2}\right)\right)$.

Intersection Example

All simplices in N , Yellow union
Red is P, and Red is E

Conley Index Persistence: New Strategy

Fix N, and for each $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n}$, compute the maximal invariant set in N, denoted $A_{1}, A_{2}, \ldots, A_{n}$, and corresponding index pairs.

$$
\left(\mathrm{cl}\left(A_{1}\right), \operatorname{mo}\left(A_{1}\right)\right),\left(\operatorname{cl}\left(A_{2}\right), \operatorname{mo}\left(A_{2}\right)\right), \ldots,\left(\operatorname{cl}\left(A_{n}\right), \operatorname{mo}\left(A_{n}\right)\right)
$$

Gives a relative zigzag filtration:

```
(pf
```


Conley Index Persistence

Problem: Noise Resilience

All simplices in N , Yellow union
Red is P, and Red is E

Solution: Make E Smaller

Conley Index Persistence

Proposition: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E^{\prime}:=E \backslash V$ is closed, then $\left(P, E^{\prime}\right)$ is an index pair in N for A.

Conley Index Persistence

Proposition: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E^{\prime}:=E \backslash V$ is closed, then $\left(P, E^{\prime}\right)$ is an index pair in N for A.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Algorithm

MakeNoiseResilient($\mathrm{P}, \mathrm{E}, \mathrm{A}, \delta$):
while there exists a regular multivector $V \subset E$ such that $E \backslash V$ is closed and $d(V, A) \leq \delta$:
$E \leftarrow E \backslash V$

Multivector Removal Strategy

Theorem: This algorithm outputs index pairs

Conley Index Persistence: Variable N

Given a "seed" isolated invariant set and isolating neighborhood, can we modify N to track changes to the invariant set across multivector fields?

Conley Index Persistence: Variable N

Given a "seed" isolated invariant set and isolating neighborhood, can we modify N to track changes to the invariant set across multivector fields?

Pitchfork Bifurcation

$$
\begin{gathered}
\frac{d x}{d t}=\lambda x-x^{3} \\
\frac{d y}{d t}=-y
\end{gathered}
$$

Pitchfork Bifurcation

Pitchfork Bifurcation - Previous Technique

Conley Index Persistence

Conley Index Persistence: Variable N

Have a sequence of isolated invariant sets $A_{1}, A_{2}, \ldots, A_{n}$ isolated by $N_{1}, N_{2}, \ldots, N_{n}\left(A_{i}\right.$ isolated by N_{i} and $\left.N_{i-1}\right)$.

$$
\begin{aligned}
\left(\operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i}\right)\right), \operatorname{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i}\right)\right)\right) & \supseteq\left(\operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i}\right)\right) \cap \operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i}\right)\right) \cap \operatorname{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \\
& \subseteq\left(\operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \\
& \left(\operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \supseteq \\
\left(\operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+1}\right)\right)\right. & \left.\cap \operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+2}\right)\right), \operatorname{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+1}\right)\right) \cap \operatorname{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+2}\right)\right)\right) \\
& \subseteq\left(\operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+2}\right)\right), \operatorname{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+2}\right)\right)\right)
\end{aligned}
$$

Conley Index Persistence: Variable N

How to connect the two index pairs?

$$
\begin{gathered}
\left(\operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \mathrm{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \\
\left(\operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \mathrm{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right)
\end{gathered}
$$

Conley Index Persistence: Variable N

Theorem: If $\left(P_{1}, E_{1}\right),\left(P_{2}, E_{2}\right)$ are strong index pairs for A in N_{1}, N_{2}, where A is isolated by $N_{1}, N_{2}, N_{1} \cup N_{2}$, then $\left(\operatorname{pf}_{N_{1} \cup N_{2}}\left(P_{1} \cup P_{2}\right), \operatorname{pf}_{N_{1} \cup N_{2}}\left(E_{1} \cup E_{2}\right)\right)$ is an index pair for A in $N_{1} \cup N_{2}$

Conley Index Persistence: Variable N

Strategy replace

$$
\begin{gathered}
\left(\operatorname{pf}_{N_{i}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \\
\text { and } \\
\left(\operatorname{pf}_{N_{i+1}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i+1}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right) \\
\text { with }
\end{gathered}
$$

$$
\left(\operatorname{pf}_{N_{i} \cup N_{i+1}}\left(\mathrm{cl}\left(A_{i+1}\right)\right), \operatorname{pf}_{N_{i} \cup N_{i+1}}\left(\operatorname{mo}\left(A_{i+1}\right)\right)\right)
$$

Conley Index Persistence: Variable N

To summarize, given $A_{1}, A_{2}, \ldots, A_{n}$ isolated by $N_{1}, N_{2}, \ldots, N_{n}$, where each A_{i} is isolated by $N_{i} \cup N_{i+1}$, we obtain a zigzag filtration.

But given A_{1} and N_{1}, how to find A_{2}, \ldots, A_{n} and N_{2}, \ldots, N_{n} ?

Finding R

Strategy: Given N_{1}, A_{1}, define a "collar" C around A_{1}, then find set of simplices R so that A_{1} is isolated by $N_{1} \cup C \backslash R$.
$N_{2}:=C \backslash R$
Take A_{2} to be the maximal invariant set in N_{2}

How to find R ?

Finding R

FindR(A, $\mathrm{N}, \delta)$:
$A^{\prime}=\operatorname{pb}_{N}(A)=\left\{\sigma \in N \mid A \cap \operatorname{pf}_{N}(\{\sigma\}) \neq \emptyset\right\}$
C^{\prime} denotes a δ-collar of A
while there exists a path in C^{\prime} from A to A^{\prime} :
Let σ denote the last simplex not in A^{\prime} add all cofaces of σ to R
return R

Finding R

Theorem: The set $C^{\prime} \backslash R$ is closed.
Theorem: The invariant set A is isolated by $N \cup\left(C^{\prime} \backslash R\right)$

Pitchfork Bifurcation: Variable N

Pitchfork Bifurcation: Variable N

Pitchfork Bifurcation: Variable N

Conclusion \& Future Work

- Stability?
- Inference?

References

[CDM09] G. Carlsson, V. de Silva, D. Morozov. "Zigzag Persistent Homology and Real Valued Functions." SoCG "09
[DW07] T. Dey, R. Wenger. "Stability of Critical Points with Interval Persistence." Discret. Comput. Geom. Volume 33, Issue 3.
[ELZOO] H. Edelsbrunner, D. Letscher, A. Zomordian "Toplogical Persistence and Simplification." FOCS ‘00.
[LKMW19] M. Lipinski, J. Kubica, M. Mrozek, T. Wanner. "Conley-MorseForman theory for generalized combinatorial multivector fields on finite topological spaces." Preprint.
[Mr17] M. Mrozek. "Conley-Morse-Forman Theory for Combinatorial Multivector Fields." FOCM Volume 17, Issue 6.

