Persistence of the Conley Index in Combinatorial Dynamical Systems

Tamal K. Dey, Marian Mrozek, and Ryan Slechta

Overview & Outline

- Persistence
- Combinatorial Dynamical Systems & Conley Index
- Capturing changes in Dynamical Systems via Persistence

Persistent Homology

Summarizes changing homology of a filtration [ELZ00]

$K_1 \subseteq K_2 \subseteq \ldots \subseteq K_n = K$

Persistence Example

Persistence Example

Persistence Example

Zigzag Persistence

$K_1 \subseteq K_2 \supseteq K_3 \subseteq \ldots \supseteq K_n$

"Level Set" Persistence

 $\subseteq \square \square \square \square$ 1

[CDM09] [DW07]

Level Set Barcode

Overview & Outline

- Persistence
- Combinatorial Dynamical Systems & the Conley Index
- Capturing changes in Dynamical Systems via Persistence

Multivectors

Let K denote a simplicial complex and \leq denote the face relation.

Definition: A <u>multivector</u> V is a convex subset of K with respect to \leq .

Definition: A <u>multivector field</u> \mathcal{V} is a partition of K into multivectors.

 $\mathcal{V} = \{\{b\}, \{b, bc\}, \{a, ab, ac, abc\}\}$

Multivector Fields

Multivector Fields as a Dynamical System

Let
$$\sigma \in K$$
. Then $\operatorname{cl}(\sigma) = \{ \tau \in K \mid \tau \leq \sigma \}.$

 $[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ

Dynamics generator $F_{\mathcal{V}}$: $K \multimap K$ defined as:

$$F_{\mathcal{V}}\left(\sigma\right) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}\left(\sigma\right)$$

Combinatorial Dynamical Systems

Paths

<u>Definition</u>: A path is a finite sequence of simplices $\sigma_1, \sigma_2, \ldots, \sigma_n$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

Solutions

<u>Definition</u>: A solution is a bi-infinite sequence of simplices $\dots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \dots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

Solutions

<u>Definition</u>: A solution is a bi-infinite sequence of simplices $\dots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \dots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

But as $F_{\mathcal{V}}\left(\sigma
ight)=\left[\sigma
ight]_{\mathcal{V}}\cup\mathsf{cl}\left(\sigma
ight)$, every simplex gives a solution!

Critical Multivectors

<u>Definition</u>: Let $A \subseteq K$. The mouth of A is defined as $mo(A) := cl(A) \setminus A$

<u>**Definition:</u>** A multivector $[\sigma]_{\mathcal{V}}$ is critical if there exists a k such that $H_k(\mathsf{cl}([\sigma]_{\mathcal{V}}), \mathsf{mo}([\sigma]_{\mathcal{V}}))$ is nontrivial.</u>

Critical Multivectors

Critical:

Regular:

Essential Solutions

<u>Definition</u>: Let $\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots$ denote a solution. If for each σ_i where $[\sigma_i]_{\mathcal{V}}$ is noncritical, there exists a j > i and j' < i where $[\sigma_i]_{\mathcal{V}} \neq [\sigma_j]_{\mathcal{V}}$ and $[\sigma_i]_{\mathcal{V}} \neq [\sigma_{j'}]_{\mathcal{V}}$, then $\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots$ is an essential solution.

Invariant Sets

<u>Definition</u>: Let $A \subseteq K$. The invariant part of A, denoted Inv(A), is the set of simplices in A which appear in an essential solution in A.

If A = Inv(A), then A is an invariant set.

Invariant Sets

Definition: Let A denote an invariant set. If A is equal to a union of multivectors, then A is \mathcal{V} -compatible.

From now on, assume that invariant sets are $\mathcal V$ -compatible.

Isolated Invariant Sets

Definition: Let $A \subseteq N \subseteq K$, where A is an invariant set and N is closed (i.e. N = cl(N)). If every path in N with endpoints in A is contained in A, then A is an isolated invariant set, and N is an isolating neighborhood for A.

Isolated Invariant Sets

<u>Note:</u> We have already seen that the yellow invariant set is not isolated by the rectangle. But does a different neighborhood isolate it?

Index Pairs

Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

1.
$$F_{\mathcal{V}}(E) \cap P \subset E$$
,
2. $F_{\mathcal{V}}(P \setminus E) \subseteq P$, and
3. $A = \operatorname{Inv}(P \setminus E)$

Then (P, E) is an index pair for A.

Conley Index

Theorem [LKMW2019]: Let A denote an isolated invariant set. The pair $({\rm cl}(A),{\rm mo}(A))$ is an index pair for A .

Index Pairs are Not Unique

Conley Index

<u>Definition</u>: Let (P, E) be an index pair for A. Then the k-dimensional Conley Index is given by $H_k(P, E)$.

Theorem [LKMW 2019]: The k-dimensional Conley Index for A is well defined.

Conley Indices

 $H_2(R \cup Y, R) = \mathbb{Z}_2$

Conley Indices?

Overview & Outline

- Persistence
- Combinatorial Dynamical Systems & the Conley Index
- Capturing changes in Dynamical Systems via Persistence

Persistence: capture changing homology of spaces

But what about dynamical systems?

Motivating Example: Hopf Bifurcation

$$x' = -y + x(\lambda - x^2 - y^2)$$
$$y' = x + y(\lambda - x^2 - y^2)$$

Motivating Example: Hopf Bifurcation

 $\lambda \ll 0$

Motivating Example: Hopf Bifurcation

 $\lambda = 0$

 $\lambda = 1$

 $\lambda = 2.5$

 $\lambda = 5$

 $\lambda = 10$

 $\lambda = 15$

 $\lambda = 17.5$

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Can we use persistence to capture this, or a related feature?

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Can we use persistence to capture this, or a related feature?

Yes, using a special type of index pair

Conley Index Persistence

First attempt: for each $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$, compute an isolated invariant set, A_1, A_2, \ldots, A_n and corresponding index pairs.

 $(cl(A_1), mo(A_1)), (cl(A_2), mo(A_2)), \dots, (cl(A_n), mo(A_n)))$

Gives a relative zigzag filtration:

 $\ldots \subseteq (\mathsf{cl}(A_i), \mathsf{mo}(A_i)) \supseteq (\mathsf{cl}(A_i) \cap \mathsf{cl}(A_{i+1}), \mathsf{mo}(A_i) \cap \mathsf{mo}(A_{i+1})) \subseteq (\mathsf{cl}(A_{i+1}), \mathsf{mo}(A_{i+1})) \supseteq \ldots$

Problem: $(cl(A_i) \cap cl(A_{i+1}), mo(A_i) \cap mo(A_{i+1}))$ generally not an index pair.

Intersection Example

Index Pairs in an Isolating Neighborhood

Let $E \subseteq P \subseteq N$ for closed P, E, N, and $A \subseteq N$. If: 1. $F_{\mathcal{V}}(P) \cap N \subseteq P$, 2. $F_{\mathcal{V}}(E) \cap N \subseteq E$, 3. $F_{\mathcal{V}}(P \setminus E) \subseteq N$, and 4. $A = \operatorname{Inv}(P \setminus E)$ then (P, E) is an index pair in N.

Push Forward

Let $A \subseteq K$ denote an arbitrary set in some closed N. Then the push forward of A in N is A together with all simplices in N which are reachable from paths originating in A and contained in N.

Finding Index Pairs in N

<u>Theorem</u>: The push forward in N of an index pair is an index pair in N

Index Pairs in an Isolating Neighborhood

<u>Theorem</u>: Index Pairs in N are index pairs.

<u>Definition</u>: Let \mathcal{V}_1 , \mathcal{V}_2 denote multivector fields over K. The intersection of multivector fields is given by $\mathcal{V}_1 \overline{\cap} \mathcal{V}_2 = \{V_1 \cap V_2 \mid V_1 \in \mathcal{V}_1, \ V_2 \in \mathcal{V}_2\}$

<u>**Theorem:**</u> Let $(P_1, E_1), (P_2, E_2)$ denote index pairs in N under $\mathcal{V}_1, \mathcal{V}_2$. The pair $(P_1 \cap P_2, E_1 \cap E_2)$ is an index pair in N under $\mathcal{V}_1 \cap \mathcal{V}_2$ for $\operatorname{Inv}((P_1 \cap P_2) \setminus (E_1 \cap E_2))$.

Intersection Example

All simplices in N, Yellow union Red is P, and Red is E

Conley Index Persistence: New Strategy

Fix N, and for each $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$, compute the maximal invariant set in N, denoted A_1, A_2, \ldots, A_n , and corresponding index pairs.

$$(cl(A_1), mo(A_1)), (cl(A_2), mo(A_2)), \dots, (cl(A_n), mo(A_n))$$

Gives a relative zigzag filtration:

 $(\mathsf{pf}_N(\mathsf{cl}A_i),\mathsf{pf}_N(\mathsf{mo}A_i)) \supseteq (\mathsf{pf}_N(\mathsf{cl}A_i) \cap \mathsf{pf}_N(\mathsf{cl}A_{i+1}),\mathsf{pf}_N(\mathsf{mo}A_i) \cap \mathsf{pf}_N(\mathsf{mo}A_{i+1})) \subseteq (\mathsf{pf}_N(\mathsf{cl}A_{i+1}),\mathsf{pf}_N(\mathsf{mo}A_{i+1}))$

Conley Index Persistence

Problem: Noise Resilience

All simplices in N, Yellow union Red is P, and Red is E

Solution: Make E Smaller

Conley Index Persistence

<u>Proposition</u>: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E' := E \setminus V$ is closed, then (P, E') is an index pair in N for A.

Conley Index Persistence

<u>Proposition</u>: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E' := E \setminus V$ is closed, then (P, E') is an index pair in N for A.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Algorithm

MakeNoiseResilient(P, E, A, δ):

while there exists a regular multivector $V \subset E$ such that $E \setminus V$ is closed and $d(V, A) \le \delta$: $E \leftarrow E \setminus V$

Multivector Removal Strategy

Theorem: This algorithm outputs index pairs

Given a "seed" isolated invariant set and isolating neighborhood, can we modify N to track changes to the invariant set across multivector fields?

Given a "seed" isolated invariant set and isolating neighborhood, can we modify N to track changes to the invariant set across multivector fields?

$$\frac{dx}{dt} = \lambda x - x^3$$
$$\frac{dy}{dt} = -y$$

Conley Index Persistence

Have a sequence of isolated invariant sets A_1, A_2, \ldots, A_n isolated by N_1, N_2, \ldots, N_n (A_i isolated by N_i and N_{i-1}). $(pf_{N_i}(cl(A_i)), pf_{N_i}(mo(A_i))) \supseteq (pf_{N_i}(cl(A_i)) \cap pf_{N_i}(cl(A_{i+1})), pf_{N_i}(mo(A_i)) \cap pf_{N_i}(mo(A_{i+1}))) \subseteq (pf_{N_i}(cl(A_{i+1})), pf_{N_i}(mo(A_{i+1}))) \cap pf_{N_i}(mo(A_{i+1})))$

> $(\mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+1})), \mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+1}))) \supseteq$ $(\mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+1})) \cap \mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+2})), \mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+1})) \cap \mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+2})))$ $\subseteq (\mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+2})), \mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+2})))$

How to connect the two index pairs?

$$(\mathsf{pf}_{N_i}(\mathsf{cl}(A_{i+1})),\mathsf{pf}_{N_i}(\mathsf{mo}(A_{i+1}))))$$
$$(\mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+1})),\mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+1})))$$

<u>Theorem</u>: If (P_1, E_1) , (P_2, E_2) are strong index pairs for A in N_1, N_2 , where A is isolated by $N_1, N_2, N_1 \cup N_2$, then $(\mathsf{pf}_{N_1 \cup N_2}(P_1 \cup P_2), \mathsf{pf}_{N_1 \cup N_2}(E_1 \cup E_2))$ is an index pair for A in $N_1 \cup N_2$

Strategy replace

$$(\mathsf{pf}_{N_{i}}(\mathsf{cl}(A_{i+1})), \mathsf{pf}_{N_{i}}(\mathsf{mo}(A_{i+1}))) \\ and \\ (\mathsf{pf}_{N_{i+1}}(\mathsf{cl}(A_{i+1})), \mathsf{pf}_{N_{i+1}}(\mathsf{mo}(A_{i+1}))) \\ with$$

$$(\mathsf{pf}_{N_i \cup N_{i+1}}(\mathsf{cl}(A_{i+1})), \mathsf{pf}_{N_i \cup N_{i+1}}(\mathsf{mo}(A_{i+1})))$$

To summarize, given A_1, A_2, \ldots, A_n isolated by N_1, N_2, \ldots, N_n , where each A_i is isolated by $N_i \cup N_{i+1}$, we obtain a zigzag filtration.

But given A_1 and N_1 , how to find A_2, \ldots, A_n and N_2, \ldots, N_n ?

Finding R

Strategy: Given N_1 , A_1 , define a "collar" C around A_1 , then find set of simplices R so that A_1 is isolated by $N_1 \cup C \setminus R$.

 $N_2 := C \setminus R$

Take A_2 to be the maximal invariant set in N_2

How to find $\,R$?

Finding R

FindR(A, N, δ):

$$A' = \mathsf{pb}_N(A) = \{ \sigma \in N \mid A \cap \mathsf{pf}_N(\{\sigma\}) \neq \emptyset \}$$

C' denotes a δ -collar of A

while there exists a path in C' from A to A':

Let σ denote the last simplex not in A' add all cofaces of σ to R

return R

Finding R

<u>Theorem:</u> The set $C'\setminus R$ is closed.

<u>Theorem:</u> The invariant set A is isolated by $N \cup (C' \setminus R)$

Conclusion & Future Work

- Stability?
- Inference?

References

[CDM09] G. Carlsson, V. de Silva, D. Morozov. "Zigzag Persistent Homology and Real Valued Functions." SoCG '09

[DW07] T. Dey, R. Wenger. "Stability of Critical Points with Interval Persistence." Discret. Comput. Geom. Volume 33, Issue 3.

[ELZ00] H. Edelsbrunner, D. Letscher, A. Zomordian "Toplogical Persistence and Simplification." FOCS '00.

[LKMW19] M. Lipinski, J. Kubica, M. Mrozek, T. Wanner. "Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces." Preprint.

[Mr17] M. Mrozek. "Conley-Morse-Forman Theory for Combinatorial Multivector Fields." FOCM Volume 17, Issue 6.